首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adaptive capacity (AC)—the ability of a species to cope with or accommodate climate change—is a critical determinant of species vulnerability. Using information on species’ AC in conservation planning is key to ensuring successful outcomes. We identified connections between a list of species’ attributes (e.g., traits, population metrics, and behaviors) that were recently proposed for assessing species’ AC and management actions that may enhance AC for species at risk of extinction. Management actions were identified based on evidence from the literature, a review of actions used in other climate adaptation guidance, and our collective experience in diverse fields of global-change ecology and climate adaptation. Selected management actions support the general AC pathways of persist in place or shift in space, in response to contemporary climate change. Some actions, such as genetic manipulations, can be used to directly alter the ability of species to cope with climate change, whereas other actions can indirectly enhance AC by addressing ecological or anthropogenic constraints on the expression of a species’ innate abilities to adapt. Ours is the first synthesis of potential management actions directly linked to AC. Focusing on AC attributes helps improve understanding of how and why aspects of climate are affecting organisms, as well as the mechanisms by which management interventions affect a species’ AC and climate change vulnerability. Adaptive-capacity-informed climate adaptation is needed to build connections among the causes of vulnerability, AC, and proposed management actions that can facilitate AC and reduce vulnerability in support of evolving conservation paradigms.  相似文献   

2.
To study the interaction between species- and ecosystem-level impacts of climate change, we focus on the question of how climate-induced shifts in key species affect the positive feedback loops that lock shallow lakes either in a transparent, macrophyte-dominated state or, alternatively, in a turbid, phytoplankton-dominated state. We hypothesize that climate warming will weaken the resilience of the macrophyte-dominated clear state. For the turbid state, we hypothesize that climate warming and climate-induced eutrophication will increase the dominance of cyanobacteria. Climate change will also affect shallow lakes through a changing hydrology and through climate change-induced eutrophication. We study these phenomena using two models, the full ecosystem model PCLake and a minimal dynamic model of lake phosphorus dynamics. Quantitative predictions with the complex model show that changes in nutrient loading, hydraulic loading and climate warming can all lead to shifts in ecosystem state. The minimal model helped in interpreting the non-linear behaviour of the complex model. The main output parameters of interest for water quality managers are the critical nutrient loading at which the system will switch from clear to turbid and the much lower critical nutrient loading – due to hysteresis – at which the system switches back. Another important output parameter is the chlorophyll-a level in the turbid state. For each of these three output parameters we performed a sensitivity analysis to further understand the dynamics of the complex model PCLake. This analysis showed that our model results are most sensitive to changes in temperature-dependence of cyanobacteria, planktivorous fish and zooplankton. We argue that by combining models at various levels of complexity and looking at multiple aspects of climate changes simultaneously we can develop an integrated view of the potential impact of climate change on freshwater ecosystems.  相似文献   

3.
Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land‐use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate‐change mitigation policies will reduce direct climate‐change impacts; however, these policies will influence land‐use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land‐use changes. We estimated past extinctions from historical land‐use changes (1500–2005) based on the global gridded land‐use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land‐use changes under alternative climate‐change scenarios (2005–2100). Future land‐use changes are projected to reduce natural vegetative cover by 26‐58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land‐use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate‐change mitigation scenario and biological factors such as the slope of the species–area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land‐use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land‐use changes in hotspots or by lessening the impact of future land‐use activities on biodiversity within hotspots.  相似文献   

4.
气候变暖背景下森林土壤碳循环研究进展   总被引:8,自引:0,他引:8  
由人类活动引起的温室效应以及由此造成的气候变暖对森林牛态系统的影响已引起人们的普遍关注.森林土壤碳循环作为全球碳循环的重要组成部分,是决定未来陆地牛物嘲表现为碳源/碳汇的关键环节,揭示这一作用对于准确理解全球变化背景下陆地生态系统碳循环过程具有重要的指导意义.本文主要通过论述影响土壤碳循环过程的5个方面(土壤呼吸、土壤微生物、土壤酶活性、凋落物输入与分解、土壤碳库),综述了近10 a来全球气候变暖对土壤碳循环过程的影响.近年来,尽管已开展了大量有关土壤碳循环对气候变暖的响应及反馈机制的研究,并取得了一定的成果,但研究结果仍然存在很大的不确定性.整合各种密切关联的全球变化现象,完善研究方法和实验手段,加强根际微生态系统碳循环过程与机理研究将是下一步研究的方向和重点.参70  相似文献   

5.
Agricultural productivity growth is vital for economic and food security outcomes which are threatened by climate change. In response, governments and development agencies are encouraging the adoption of ‘climate-smart’ agricultural technologies, such as conservation agriculture (CA). However, there is little rigorous evidence that demonstrates the effect of CA on production or climate resilience, and what evidence exists is hampered by selection bias. Using panel data from Zimbabwe, we test how CA performs during extreme rainfall events - both shortfalls and surpluses. We control for the endogenous adoption decision and find that use of CA in years of average rainfall results in no yield gains, and in some cases yield loses. However, CA is effective in mitigating the negative impacts of deviations in rainfall. We conclude that the lower yields during normal rainfall seasons may be a proximate factor in low uptake of CA. Policy should focus promotion of CA on these climate resilience benefits.  相似文献   

6.
7.
Extreme climate events produce simultaneous changes to the mean and to the variance of climatic variables over ecological time scales. While several studies have investigated how ecological systems respond to changes in mean values of climate variables, the combined effects of mean and variance are poorly understood. We examined the response of low-shore assemblages of algae and invertebrates of rocky seashores in the northwest Mediterranean to factorial manipulations of mean intensity and temporal variance of aerial exposure, a type of disturbance whose intensity and temporal patterning of occurrence are predicted to change with changing climate conditions. Effects of variance were often in the opposite direction of those elicited by changes in the mean. Increasing aerial exposure at regular intervals had negative effects both on diversity of assemblages and on percent cover of filamentous and coarsely branched algae, but greater temporal variance drastically reduced these effects. The opposite was observed for the abundance of barnacles and encrusting coralline algae, where high temporal variance of aerial exposure either reversed a positive effect of mean intensity (barnacles) or caused a negative effect that did not occur under low temporal variance (encrusting algae). These results provide the first experimental evidence that changes in mean intensity and temporal variance of climatic variables affect natural assemblages of species interactively, suggesting that high temporal variance may mitigate the ecological impacts of ongoing and predicted climate changes.  相似文献   

8.
9.
Climate change poses a major threat to human security and poverty in Africa. In Africa, where livelihoods are mainly based on climate-dependent resources and environment, the effect of climate change will be disproportionate and severe. Moreover, Africa's capacity to adapt to and cope with the adverse effects of climate variability is generally weak. This article discusses how climate change affects human security in Africa. It also assesses the policy options available to policymakers in terms of mitigation and adaptation to climate change to reduce vulnerability and human insecurity in Africa.  相似文献   

10.
Although the impacts of climate and land-use changes on biodiversity have been widely documented, their joint effects remain poorly understood. We evaluated how nonbreeding waterbird communities adjust to climate warming along a gradient of land-use change. Using midwinter waterbird counts (132 species) at 164 major nonbreeding sites in 22 Mediterranean countries, we assessed the changes in species composition from 1991 to 2010, relative to thermal niche position and breadth, in response to regional and local winter temperature anomalies and conversion of natural habitats. We observed a low-level, nonsignificant community adjustment to the temperature increase where natural habitat conversion occurred. At the sites affected by natural habitat conversion, the relative increase of warm-dwelling species in response to climate warming was 6 times lower and the relative species decline was 3 times higher than in the sites without natural habitat conversion. We found no evidence of community adjustment to climate warming when natural habitat conversion was >5% over 15 years. This strong negative effect suggests an antagonistic interaction between climate warming and habitat change. These results underline the importance of habitat conservation in community adjustment to climate warming.  相似文献   

11.
Abstract: The sustainable production of bioenergy is vital to avoiding negative impacts on environmental goods such as climate, soil, water, and especially biodiversity. We propose three key issues that should be addressed in any biodiversity risk‐mitigation strategy: conservation of areas of significant biodiversity value; mitigation of negative effects related to indirect land‐use change; and promotion of agricultural practices with few negative impacts on biodiversity. Focusing on biodiversity concerns, we compared principles and criteria set to address biodiversity and other environmental and social issues in seven standards (defined here as commodity‐based standards or roundtables, or relevant European legislation): five voluntary initiatives related to bioenergy feedstocks, the Renewable Transport Fuel Obligation (United Kingdom), and the European Renewable Energy Source Directive. Conservation of areas of significant biodiversity value was fairly well covered by these standards. Nevertheless, mitigation of negative impacts related to indirect land‐use change was underrepresented. Although the EU directive, with its bonus system for the use of degraded land and a subquota system for noncrop biofuels, offered the most robust standards to mitigate potential negative effects, all of the standards fell short in promoting agricultural practices with low negative impacts on biodiversity. We strongly recommend that each standard be benchmarked against related standards, as we have done here, and that efforts should be made to strengthen the elements that are weak or missing. This would be a significant step toward achieving a bioenergy industry that safeguards Earth's living heritage.  相似文献   

12.
Long-term ecological research has become a cornerstone of the scientific endeavour to better understand ecosystem responses to environmental change. This paper provides a perspective on how such research could be advanced. It emphasizes that a profound understanding of the mechanisms underlying these responses requires that records of ecologic processes be not only sufficiently long, but also collected at an appropriate temporal resolution. We base our argument on an overview of studies of climate impacts in limnic and marine ecosystems, suggesting that lakes and oceans respond to (short-term) weather conditions during critical time windows in the year. The observed response patterns are often time-lagged or driven by the crossing of thresholds in weather-related variables (such as water temperature and thermal stratification intensity). It becomes clear from the previous studies that average annual, seasonal or monthly climate data often fall short of characterizing the thermal dynamics that most organisms respond to. To illustrate such literature-based evidence using a concrete example, we compare 2?years of water temperature data from Müggelsee (Berlin, Germany) at multiple temporal scales (from hours to years). This comparison underlines the pitfalls of analysing data at resolutions not high enough to detect critical differences in environmental forcing. Current science initiatives that aim at improving the temporal resolution of long-term observatory data in aquatic systems will help to identify adequate timescales of analysis necessary for the understanding of ecosystem responses to climate change.  相似文献   

13.
Wilson S  LaDeau SL  Tøttrup AP  Marra PP 《Ecology》2011,92(9):1789-1798
Geographic variation in the population dynamics of a species can result from regional variability in climate and how it affects reproduction and survival. Identifying such effects for migratory birds requires the integration of population models with knowledge of migratory connectivity between breeding and nonbreeding areas. We used Bayesian hierarchical models with 26 years of Breeding Bird Survey data (1982-2007) to investigate the impacts of breeding- and nonbreeding-season climate on abundance of American Redstarts (Setophaga ruticilla) across the species range. We focused on 15 populations defined by Bird Conservation Regions, and we included variation across routes and observers as well as temporal trends and climate effects. American Redstart populations that breed in eastern North America showed increased abundance following winters with higher plant productivity in the Caribbean where they are expected to overwinter. In contrast, western breeding populations showed little response to conditions in their expected wintering areas in west Mexico, perhaps reflecting lower migratory connectivity or differential effects of winter rainfall on individuals across the species range. Unlike the case with winter climate, we found few effects of temperature prior to arrival in spring (March-April) or during the nesting period (May-June) on abundance the following year. Eight populations showed significant changes in abundance, with the steepest declines in the Atlantic Northern Forest (-3.4%/yr) and the greatest increases in the Prairie Hardwood Transition (4%/yr). This study emphasizes how the effects of climate on populations of migratory birds are context dependent and can vary depending on geographic location and the period of the annual cycle. Such knowledge is essential for predicting regional variation in how populations of a species might vary in their response to climate change.  相似文献   

14.
Bonebrake TC  Deutsch CA 《Ecology》2012,93(3):449-455
Evolutionary history and physiology mediate species responses to climate change. Tropical species that do not naturally experience high temperature variability have a narrow thermal tolerance compared to similar taxa at temperate latitudes and could therefore be most vulnerable to warming. However, the thermal adaptation of a species may also be influenced by spatial temperature variations over its geographical range. Spatial climate gradients, especially from topography, may also broaden thermal tolerance and therefore act to buffer warming impacts. Here we show that for low-seasonality environments, high spatial heterogeneity in temperature correlates significantly with greater warming tolerance in insects globally. Based on this relationship, we find that climate change projections of direct physiological impacts on insect fitness highlight the vulnerability of tropical lowland areas to future warming. Thus, in addition to seasonality, spatial heterogeneity may play a critical role in thermal adaptation and climate change impacts particularly in the tropics.  相似文献   

15.
The development of species recovery plans requires considering likely outcomes of different management interventions, but the complicating effects of climate change are rarely evaluated. We examined how qualitative network models (QNMs) can be deployed to support decision making when data, time, and funding limitations restrict use of more demanding quantitative methods. We used QNMs to evaluate management interventions intended to promote the rebuilding of a collapsed stock of blue king crab (Paralithodes platypus) (BKC) around the Pribilof Islands (eastern Bering Sea) to determine how their potential efficacy may change under climate change. Based on stakeholder input and a literature review, we constructed a QNM that described the life cycle of BKC, key ecological interactions, potential climate-change impacts, relative interaction strengths, and uncertainty in terms of interaction strengths and link presence. We performed sensitivity analyses to identify key sources of prediction uncertainty. Under a scenario of no climate change, predicted increases in BKC were reliable only when stock enhancement was implemented in a BKC hatchery-program scenario. However, when climate change was accounted for, the intervention could not counteract its adverse impacts, which had an overall negative effect on BKC. The remaining management scenarios related to changes in fishing effort on BKC predators. For those scenarios, BKC outcomes were unreliable, but climate change further decreased the probability of observing recovery. Including information on relative interaction strengths increased the likelihood of predicting positive outcomes for BKC approximately 5–50% under the management scenarios. The largest gains in prediction precision will be made by reducing uncertainty associated with ecological interactions between adult BKC and red king crab (Paralithodes camtschaticus). Qualitative network models are useful options when data are limited, but they remain underutilized in conservation.  相似文献   

16.
Cattle Grazing Mediates Climate Change Impacts on Ephemeral Wetlands   总被引:1,自引:0,他引:1  
Abstract:  Climate change impacts depend in large part on land-management decisions; interactions between global changes and local resource management, however, rarely have been quantified. We used a combination of experimental manipulations and simulation modeling to investigate the effects of interactions between cattle grazing and regional climate change on vernal pool communities. Data from a grazing exclosure study indicated that 3 years after the removal of grazing, ungrazed vernal pools dried an average of 50 days per year earlier than grazed control pools. Modeling showed that regional climate change could also alter vernal pool hydrology. Increased temperatures and winter precipitation were predicted to increase periods of inundation. We evaluated the ecological implications of interactions between grazing and climate change for branchiopods and the California tiger salamander (  Ambystoma californiense ) at four sites spanning a latitudinal climate gradient. Grazing played an important role in maintaining the suitability of vernal pool hydrological conditions for fairy shrimp and salamander reproduction. The ecological importance of the interaction varied nonlinearly across the region. Our results show that grazing can confound hydrologic changes driven by climate change and play a critical role in maintaining the hydrologic suitability of vernal pools for endangered aquatic invertebrates and amphibians. These observations suggest an important limitation of impact assessments of climate change based on experiments in unmanaged ecosystems. The biophysical impacts of land management may be critical for understanding the vulnerability of ecological systems to climate change.  相似文献   

17.
综述了气候变化对物种的影响,表明气候变化会造成生物物候期的改变,导致物种地理分布的变化,增加物种的灭绝速率。分析了利用模型进行气候变化影响模拟的技术,指出模型的适用性和不确定性。最后,针对中国相关研究的不足,展望了未来开展气候变化影响研究的方向。  相似文献   

18.
Coastal hazards and community-coping methods in Bangladesh   总被引:1,自引:0,他引:1  
Addressing one of the most vulnerable coastal communities in Bangladesh, this paper explores people’s perception and vulnerabilities to coastal hazards. At the same time, it investigates the methods that communities apply to cope with different coastal hazards. Findings revealed that people perceived an increase in both the intensity of hazards and their vulnerabilities. In spite of having a number of socio-economic and locational factors enhancing their vulnerabilities, the community is creating their own ways to cope with these hazards. For different aspects of life like shelter, employment, water supply, and health, communities apply different coping methods that vary with the types of hazard. Efforts have also been made by governments and NGOs to manage coastal hazards. By highlighting both community-coping methods and efforts of development organizations, this paper attempts to devise an integrated approach for managing the coastal hazards that occur in Bangladesh.  相似文献   

19.
Conserving coral reefs is critical for maintaining marine biodiversity, protecting coastlines, and supporting livelihoods in many coastal communities. Climate change threatens coral reefs globally, but researchers have identified a portfolio of coral reefs (bioclimatic units [BCUs]) that are relatively less exposed to climate impacts and strongly connected to other coral reef systems. These reefs provide a proactive opportunity to secure a long-term future for coral reefs under climate change. To help guide local management efforts, we quantified marine cumulative human impact (CHI) from climate, marine, and land pressures (2013 and from 2008 to 2013) in BCUs and across countries tasked with BCU management. Additionally, we created a management index based on common management measures and policies for each pressure source (climate, marine, and land) to identify a country's intent and commitment to effectively manage these pressures. Twenty-two countries (79%) had increases in CHI from 2008 to 2013. Climate change pressures had the highest proportional contribution to CHI across all reefs and in all but one country (Singapore), but 18 BCUs (35%) and nine countries containing BCUs (32%) had relatively high land and marine impacts. There was a significant positive relationship between climate impact and the climate management index across countries (R2 = 0.43, p = 0.02), potentially signifying that countries with greater climate impacts are more committed to managing them. However, this trend was driven by climate management intent in Fiji and Bangladesh. Our results can be used to guide future fine-scale analyses, national policies, and local management decisions, and our management indices reveal areas where management components can be improved. Cost-effectively managing local pressures (e.g., fishing and nutrients) in BCUs is essential for building a climate-ready future that benefits coral reefs and people.  相似文献   

20.
Protected areas (PAs) are a key strategy for protecting biological resources, but they vary considerably in their effectiveness and are frequently reported as having negative impacts on local people. This has contributed to a divisive and unresolved debate concerning the compatibility of environmental and socioeconomic development goals. Elucidating the relationship between positive and negative social impacts and conservation outcomes of PAs is key for the development of more effective and socially just conservation. We conducted a global meta‐analysis on 165 PAs using data from 171 published studies. We assessed how PAs affect the well‐being of local people, the factors associated with these impacts, and crucially the relationship between PAs’ conservation and socioeconomic outcomes. Protected areas associated with positive socioeconomic outcomes were more likely to report positive conservation outcomes. Positive conservation and socioeconomic outcomes were more likely to occur when PAs adopted comanagement regimes, empowered local people, reduced economic inequalities, and maintained cultural and livelihood benefits. Whereas the strictest regimes of PA management attempted to exclude anthropogenic influences to achieve biological conservation objectives, PAs that explicitly integrated local people as stakeholders tended to be more effective at achieving joint biological conservation and socioeconomic development outcomes. Strict protection may be needed in some circumstances, yet our results demonstrate that conservation and development objectives can be synergistic and highlight management strategies that increase the probability of maximizing both conservation performance and development outcomes of PAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号