首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Carbon capture and storage technology (CCS), a technology to reduce the emissions in coal and gas power generation plants, will play an important role in the achievement of the European Union emissions reduction objective. In the European Union, energy policies are articulated around three different elements: measures to promote renewable energy technologies, the emissions certificates system and both energy-saving and energy-efficiency policies. The succession of directives and communications from the EU Commission on renewable technology generation share targets and the implementation of the European Emissions Market exemplify the serious EU commitment to a more environmentally friendly future. CCS technologies—together with RES technologies—are thus key to achieve the European emissions reduction target. Although the CCS commercial availability is not guaranteed—due to a slow technological development—some institutions, such as the Institute for Prospective Technological Studies, assume, for 2030 horizon, a quick development of this technology, growing until a maximum participation of an 18 % over the fossil fuels total generation. An eventual non-availability of these technologies in 2030 could increase the cost of this objective in a 70 %. Therefore, the achievement of pollutant emissions reduction targets depends on a correct design of the European generation technologies mix, which should include CCS technologies. Nevertheless, the uncertainty about the final costs and economic risk of these technologies makes a question about their future role to arise. This paper analyses the effects of different variations in the cost and risk of the CCS technologies (scenarios) over the European power technologies mix. The results confirm the need of the availability of these technologies in 2030, beyond the potential costs and risks of both options. The reason lies in the methodological approach of portfolio theory, which allows an analysis from an efficient portfolio point of view.  相似文献   

2.
During the last five decades (1961–2009), Spain has experienced a considerable expansion in the nutrient cycle of its agricultural sector and, in particular, a threefold increase in anthropogenic reactive nitrogen inputs, from 536 Gg N year?1 in 1961–1965 to 1673 Gg N year?1 in 2005–2009. Import of feed (soybean, cereals, and cakes) from America and Europe to supply a growing livestock population constitutes the largest share of this increase, along with intensification of synthetic fertilizer use. While in the early 1960s, Spain was nearly self-sufficient in terms of food and feed supply, the net import of agricultural products presently equals domestic crop production, when expressed in terms of nitrogen content (ca. 650 Gg N year?1). The most important driver of this shift appears to be the rapid change in domestic consumption patterns, which evolved from a typical Mediterranean diet to an animal-protein-rich diet similar to the North European and American diets. Besides livestock production mostly for national consumption, the Spanish agricultural system has specialized in vegetal products with low N content such as olive oil, wine, vegetables, and citrus fruit, which are for the most part exported. The nitrogen load exported outside the Spanish borders by rivers is very low (6.5 % of the total net N input). As a result of the high import and low export of reactive nitrogen, the Spanish mainland is suffering from considerable pollution by local emissions of reactive nitrogen forms to air and water.  相似文献   

3.
The regulations of process efficiency and stricter environmental policies require analysis of large-scale thermal energy systems to produce highly efficient, cost effective and low environmental impact energy. For analysis, it is beneficial to simulate an energy system. In this paper, simulation models are developed for the analysis of a combined cycle heat and power plant located in Göteborg, Sweden. With the help of simulation models, characteristics between district heating (DH) water temperature and key parameters such as overall district heat duty, electrical power and electrical efficiency has been developed. The characteristics are useful to estimate and maximize the key parameters during varying DH water temperature. According to a comparison between the full-load simulation models of 2006 and 2013 for the selected power plant, a loss of 2 MW is noticed for gas turbine and a loss of 2.18 MW of heat flow occurs for heat recovery steam generator in the year 2013. The feasibility analysis of modifying the connection between DH economizer and main DH line provides good performance indicators in a winter scenario. The conclusions in this paper are good references to plan and improve the performance of existing large-scale thermal power plants.  相似文献   

4.
Thailand plays an important role in the international trade of food and agricultural products, which is in alignment with its national strategy of serving as the “kitchen of the world.” When looking at its agricultural promotion and export policies, the country only counts the value gains from exports while neglecting environmental externalities related to plantation practices. The purpose of this study was to perform a trade-off analysis between consumptive water, land, and fertilizer use together with the economic values of major crops for export and consumption in the country. The results show that to gain income from agricultural exports, the country has exploited various natural resources. The area used to harvest rice, sugarcane, cassava, and rubber adds up to approximately 15.3 million ha: 7.2 million ha of which is for domestic consumption and 8.1 ha for export. To produce Thailand’s agricultural exports, total water use is estimated to be 49.8–67.5 billion m3 per year (61–65 %), while the amount used to produce crops for domestic consumption is 26.5–43.7 billion m3 per year (35–39 %). Meanwhile, 1,056–1,826 thousand tons (54 %) of fertilizer was used on crops for domestic consumption, and 1,222–1,370 thousand tons (46 %) of fertilizer was used on export crops. The best crop choice for export in terms of its export value, land use, fertilizer use, and water consumption is rubber. The worst crop choices for export are rice and cassava. More sustainable agricultural practices are needed to effect improvements such as increased yields and reduced fertilizer and water use.  相似文献   

5.
This paper reveals comparative experimental analysis of the effect of variation of natural and forced convection heat losses on the performance of prototype parabolic dish water heater with coated and non-coated receivers. With the above-described system, hot water needs in domestic applications can be fulfilled instantly. A parabolic dish collector was used for instant water heating. Design of solar parabolic dish collector consists of truncated cone-shaped helical coiled receiver made up of copper at focal point. Instantaneous efficiency of 63% and 48% has been achieved with coated and non-coated receivers. This prototype has been evaluated for its performance with water flow rate of 0.0076 kg/s during the months of April and May 2010 at Shivaji University, Kolhapur, Maharashtra, India (latitude: 16.42° North, longitude: 74.13° West).  相似文献   

6.
Efficient use of energy helps to achieve increased production and productivity and contributes to the economy, profitability, and competitiveness of agricultural sustainability of rural communities. Evaluation of wheat and barley production systems in view of energy balance was conducted in Khorasan Razavi Province, Iran. Data were collected by using a face-to-face questionnaire from wheat and barley fields in 2011. Results revealed that total energy input for wheat was 51,040 MJ ha?1 and for barley 44,866; in wheat and barley systems, renewable energy was consumed by 25.43 and 23.53 %, while non-renewable energy was consumed by 74.57 and 76.47 %, respectively. Energy use efficiency, energy productivity, and net energy were 1.7 kg MJ?1, 0.088 kg MJ?1, and 35,987 MJ ha?1 in wheat system and 1.83 kg MJ?1, 0.092 kg MJ?1, and 33,833 MJ ha?1 in barley system, respectively. Energy intensiveness in wheat fields (61.84 MJ $?1) was higher than in barley fields (58.71 MJ $?1). Also, benefit-to-cost ratio in wheat system (1.59) was higher than in barley system (1.35). In general, production in barley fields was more sustainable than wheat production because, in view of ecological indices such as amount of energy use and renewable energy consumption, it was more environment-friendly production.  相似文献   

7.
Value stream mapping (VSM) is a well-accepted tool within lean manufacturing concept which is often used for analysing and designing the flow of materials and information required to manufacture a product. However, the analysis is static and single product oriented, which fails to cope with either the variation of production plan or a multi-product environment. In addition, the environmental impact of a manufacturing system is highly associated with the dynamic consumption of energy and resources. Despite the recent integration of VSM with simulation or environmental studies (in the domain of energy efficiency), still neglected is the dynamic assessment of all the resources involved in a multi-product production environment. This paper presents a methodology for modelling multi-product manufacturing systems with dynamic material, energy and information flows with the aim to generate economic and environmental value stream maps (E2VSM). The proposed methodology is validated with an industrial case.  相似文献   

8.
Increasingly, emphasis is being placed on the role of indigenous or locally crafted natural resources management systems in sustainable natural resources management. While it is generally agreed that their potential to sustain and protect natural ecosystems exists in large measure, such systems are increasingly facing diverse internal and external pressures that threaten their viability. These pressures include demographic and economic change, land privatisation policies, renewable energy investment projects and large-donor-driven livelihood projects. Such pressures and their complexity raise the need to understand how local communities organise to protect resources they collectively value in the face of both internal and external pressures. Based on empirical data collected through interviews, participant observations, focus group discussions and a questionnaire survey conducted with local level actors in Shisholeka village of Central Zambia, this paper shows how local actors, in the absence of state support, react to internal and external pressures to develop robust and locally suited governance and institutional arrangements that best suit their interests in order to sustain their resource base.  相似文献   

9.
The function, cost and environmental performance are the primary decision-making factors for scheme selection in green design. For the comprehensive and accurate decision-making in selecting green product design scheme, a quantitative analysis method of multi-attribute decision-making (MADM) is presented. With analysing the multi-attribute of scheme selection, the MADM model is established, which takes environmental impact of materials, disassembly performance, recycling performance, energy efficiency, noise, pollutants to environmental and functional values. Fuzzy technique for order performance by similarity to ideal solution method is applied to solve this model for the feasible solutions. Finally, a case study is given to validate the application of this methodology as a useful design guideline for scheme selection in green design.  相似文献   

10.
The estimation of the sustainability performance of products requires tools to provide systematic approaches to the definition of impacts, indicators and comparative scenarios from early design stages. This paper illustrates the Relative Assessment of Indicators in Sustainability Enhancement (RAISE) methodology that is based on the measure of negative impacts generated during any product life cycle stage. This approach includes a systematic process for the definition and evaluation of indicators to compare the sustainability performance of products considering each indicator individually and using a holistic index of sustainability to entail an overall comparison between products from manufacturing scenarios. The RAISE method is developed with the aim of assessing sustainability performance of product life cycle stages and incorporating this assessment into the decision-making process when comparing different manufacturing scenarios. A guitar capo manufactured in polymeric material is used as case study to demonstrate the use of the method. In this paper, only the manufacturing stage is considered; however, the method can also be employed in other stages of the life cycle.  相似文献   

11.
Anaerobic digestion (AD) as a waste treatment practice has existed for nearly 200 years and has become an accepted option for many farming and small-scale residential operations. Many developing countries now encourage the use of AD in order to meet new environmental regulations and/or to provide small amounts of energy resulting from methane generated during the process. This development has been met with some difficulty due to the lack of resources and knowledge of the systems in many of the rural communities in which these digesters are placed. A properly designed AD system can help prevent soil and water pollution as well as help mitigate methane emissions by capturing them for use as a potential energy source. This paper focuses on providing guidance to the proper design and sizing of an AD system for typical small farms, which account for the majority of dairy farms worldwide. A focus was on the implementation of such systems as they might be applied in Central America, although the aspects studied here can be applied for AD systems handling animal waste streams practically anywhere. We provide a method for sizing of anaerobic digester systems based on design standards from the US National Resource Conservation Service and using field sampled data of holding pen wash water runoff. An overview of the decision process for alternative designs is given, and simple-to-use nomographs are presented for use in sizing of an anaerobic digester system for smaller (non-industrial)-scale farms.  相似文献   

12.
The conservation of forests in expanding frontier landscapes is critically important to maintain intact forest ecosystems and support forest dependent communities. To conserve frontier forests, policy approaches are needed that conserve forests and advance the well-being of local resource dependent communities. To identify such approaches, the forest conservation and development framework (FCDF) was designed to find place-based conservation-development policies that target system leverage-points influencing land-use practices. To demonstrate the utility of the FCDF, a portfolio of conservation-development policies were identified for Peru’s Manu-Tambopata Corridor (MAT) and evaluated by local land-users. Results of the MAT case study show high levels of interest in the proposed policies, but a wide variation in interest levels relative to personal circumstances and policies proposed. Barriers to implementing conservation-development policies in frontier environments were also identified, including high value land-use alternatives generating high opportunity costs for accepting PES payments (e.g., REDD+), insecure land tenure and conflicting authorizations limiting land-users policy choices, and broad demographic diversity among local land-users. Collectively, this research suggests the FCDF is a useful approach for identifying policies matched to local conditions that advance conservation and human development. This research also indicates policy design in frontier environments is most effective when adapted to local conditions, seeks to identify a mix of complementary policies, and is targeted at key system variables influencing land-use practices (i.e., system leverage-points). Importantly, the MAT case study also highlights how even in rapidly changing frontier landscapes, land-users are interested in policies that advance conservation and development goals.  相似文献   

13.
Cost-effective materials, products and installation methods are required to improve the energy efficiency of the UK's existing building stock. The aim of this paper is to assess the potential for high-performance translucent granular aerogel insulation to be retrofitted over single glazing to reduce heat loss without blocking out all of the useful natural light. In situ testing of a 10-mm-thick prototype panel, consisting of a clear twin-wall polycarbonate sheet filled with granular aerogel, was carried out and validated with steady-state calculations. Results demonstrate that an 80% reduction in heat loss can be achieved without detrimental reductions in light transmission. Payback calculations accounting for the inevitable thermal bridging from openable solutions such as roller shutters or pop-in secondary glazing suggest that a return on investment between 3.5 and 9.5 years is possible if products are consistently used over the heating season. Granular aerogel is a promising material for improving the thermal performance of existing windows. Future research will seek to map out different ways in which the material can be applied to the existing UK housing stock, identifying which systems offer the greatest potential for widespread CO2 savings over their life cycle.  相似文献   

14.
The aim of this paper is to develop computational machining energy estimation tools during the early design stage of product development. In the preliminary or embodiment design, a product's shape and materials are determined. At this stage, it is crucial for a designer to be able to compare alternative designs and materials based on many different criteria, such as cost, functionality, energy, etc. Automated tools for estimating energy consumption that could later be used to integrate with CAD/CAM systems are in demand. This study presents computational tools for estimating the energy consumption of machining operations during the early design phase. The computational tools utilize a preliminary computer representation of a product (CAD model), its material and candidate machining operations to automatically analyse and estimate a range of energy consumption during machining operations. Detailed steps for computing turning and milling energy consumption are presented. Case studies of both parts and assemblies were conducted to test the validity of the tools and to evaluate the performance of the tools. Environmental impacts such as carbon weight will also be estimated. The computation tools will assist users with little knowledge about energy computations to estimate energy consumption during the design stage. Such energy estimation can be used to redesign parts and assemblies, leading to the development of products with reduced machining energy. The computation tools are part of a larger research on estimating energy consumption throughout a product's life cycle.  相似文献   

15.
This paper presents an overall design method to better consider the energy consumption of electrical and electronic equipment during the use phase. This aspect is often considered as the most important environmental aspect in active electrical and electronic equipment during its life cycle. The proposed method, called ‘Synergico’, characterises the product energy efficiency according to its modes, its functions and its sub-assemblies. It also articulates three tools: one assessment tool, one improvement tool and one environmental check tool. These tools are integrated along a typical product design process. The method therefore helps designing more energy-efficient products without compromising other performances such as ergonomics, functional performances, security, recyclability or costs. The three tools and the overall method are presented. A case study illustrates the way it works and is discussed.  相似文献   

16.
The underground temperature at a depth of about 3–4 m is almost constant all the year round. In summer, the underground temperature is lower than the ambient temperature, but in winter it is vice versa. This potentiality is considered for greenhouse cooling and heating by using an earth-to-air heat exchanger (EAHE). This paper considers the effects of two parameters as independent variables including the area of greenhouse and the percentage of vegetation coverage inside the greenhouse on the performance of an EAHE system during both cooling and heating modes. The inside temperature, the thermal energy exchange and the coefficient of performance (COP) of the system were considered as dependent variables. The results showed that both greenhouse area and the percentage of vegetation coverage inside the greenhouse had significant effects on the performance of the EAHE system during both cooling and heating modes. However, the COP of the EAHE system was higher in the cooling mode (4.32) than during the heating mode (1.01). The percentage of vegetation coverage negatively affected the performance of the EAHE system in the cooling mode. However, the performance of the EAHE system improved with the increase in the percentage of vegetation coverage during the heating mode.  相似文献   

17.
High energy consumption is one of the major factors that contributes to global warming. Connected to this, a directive has been approved by the European Union for establishing a legal framework to govern eco-design of energy-using products. This technical note reveals life cycle analysis of two electrical products, which rely on the same rechargeable battery system (i.e. the same energy source) for operations, with respect to the requirements of the aforementioned directive. Results concur with the argument that energy consumption of this sort of product plays a dominant role in terms of a variety of environmental impacts (like emission to air). Based on the results of this study, eco-design alternatives can be derived accordingly so that energy consumption and the existing solution can be benchmarked, as required by the directive.  相似文献   

18.
The first part presents a conceptual model of the economic system in its ecological and social context. It is developed via an integration of basic concepts in physical resource theory, animal and human physiology, economic theory and systems ecology. The capacity of the model to support analysis of such complex systems where life is a key system characteristic is high. The conceptual model shows the dependency of the human economy on support by non-renewable and renewable resources from Nature (i.e. ecological source restrictions), as well as the capacity of ecosystems to assimilate wastes (ecological sink restrictions). The analysis focuses general principles; thus, the high level of abstraction results in an apparent simplicity. In the second part, we integrate traditional economic production functions and the conceptual model, which results in the formulation of a biophysically anchored production function (BAPF). The BAPF by itself, and through the system of ecological economic accounts that can be derived from it, represent a toolbox that supports the operationalisation of a sustainable development from micro to macro level. It is coherent with Impredicative Loop Analysis, existing management systems within agricultural sciences, OECD’s principles for sustainable development and the approach of Millennium Ecosystem Assessment. Compared to analytical approaches used in the formulation of sustainability policies in the private and public sphere, based on conceptual models ignoring the complexity when life (bios) is a defining system characteristic, its relevance for the operationalisation of sustainable development approaches infinity. The third part presents results from statistical analysis of relations between gross domestic product and energy supply and some emissions, respectively, for different nations and time periods, delivering values on levels and trends for parameters in the BAPF as well as a first test of the relevance of the BAPF proposed. The paper is ended by a theoretical analysis of the costs of provoking an economic system working under ecological source and sink restrictions to follow exponential growth: The need to decouple economic growth from natural resource use and emissions is highlighted. Otherwise, the erosion of the ecological foundation of the economy with regard to source as well as sink aspects will be a function of exponential growth.  相似文献   

19.
One of the key features of environmentally conscious manufacturing has been the efforts to promote product recycling and remanufacturing. Efficient material re‐utilisation through product disassembly to retrieve the desired parts and/or subassemblies is one rational approach. This is because it can promote the conservation of both material and energy resources whilst concurrently reducing environmental impact. However, because manufactured products may be made from many components, disassembly load becomes a critical factor that may obstruct the recovery of materials. Accordingly, it is essential to develop a practical method for deriving a disassembly plan to decrease such load, and to endow a certain value to the product at the end of its life cycle. With this understanding, the authors have developed a practical procedure to produce an adaptive disassembly strategy. The authors have applied a meta‐heuristic method known as genetic programming (GP) as a search engine to derive the adaptive disassembly sequence together with a multi‐objective optimisation method termed MOON2R. The authors have also proposed a hierarchical sequencing method to cope with large/complex products and added several ideas to increase the applicability associated with the interests in disassembly of hazardous and/or valuable parts, and alternative disassembly actions. Through numerical experiments, the authors examined the effectiveness of the proposed approach by showing its support for relevant planning and design decisions for product recycling and remanufacturing from various viewpoints.  相似文献   

20.
Recently, environmentally conscious design and extended producer responsibility have become key aspects for companies that need to develop products that are sustainable along their whole life cycle. Design for End of Life (EoL) is a strategy that aims to reduce landfill waste through the implementation of closed-loop product life cycles. It is important to consider disassembly and EoL scenario management as early as the design phase. For these reasons, this paper presents an approach to help designers in the evaluation and subsequent improvement in product EoL performance. The method is based on four innovative EoL indices that compare different EoL scenarios for each product component. In this way, the designer can modify the product structure or the liaisons to maximise the reuse and remanufacture of components as well as material recycling. The presented case studies confirm the validity of the approach in helping designers during the redesign phase of goods and products to reduce the quantity of materials and industrial wastes sent to landfill.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号