首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper concerns the effects on biodiversity of depletion of the South African abalone Haliotis midae, which is a long-lived species with a large corrugated shell that provides a habitat for diverse benthic organisms. We compared community structure on H. midae shells with that on adjacent rock at three sites (Cape Point and Danger Point sites A and B) and at two different times of the year at one of these sites. Shells of H. midae consistently supported communities that were distinctly different from those on rock. In particular, three species of non-geniculate (encrusting) corallines, Titanoderma polycephalum, Mesophyllum engelhartii and Spongites discoideus, were all found either exclusively or predominantly on shells, whereas another non-geniculate coralline, Heydrichia woelkerlingii, occurred almost exclusively on adjacent rock. The primary rocky substratum, however, supported a higher number of species than abalone shells. Possible reasons for the differences between the two substrata include the relative age, microtopography and hardness of the substrata; the abundance of grazers on them; and the relative age of different zones of the abalone shell, which support communities at different stages of succession. Diversity on shells was lowest in zones that were either very young or very old, in keeping with the intermediate disturbance hypothesis. The distinctiveness of shell epibiota will increase β diversity despite having a lower α diversity than that of adjacent rock. Decimation of H. midae by overfishing therefore has implications for biodiversity conservation.  相似文献   

2.
The effects of the permanent removal of the canopy-forming alga Fucus serratus was studied in terms of both functioning and diversity on a mid–low rocky shore ecosystem in the south-west English Channel (48°N 43.686′, 3°W 59.282′). Ecosystem functioning was examined as net or gross primary productivity (NPP or GPP) and respiration (Resp) measured through CO2 fluxes. Diversity was examined as number and composition of species. Measurements were performed in situ, during emersion times, without altering target assemblages. The experiment was designed with two treatments [control (C) or canopy removed (CR)] and five replicates, and was conducted over an 18-month period (from February 2006 to August 2007) to integrate the seasonal variability. The mean GPP and Resp were severely reduced in CR treatment compared to control throughout the survey. The mean NPP was not affected at first, due to the development of opportunistic green algae, but was drastically reduced after 9 months of experiment. The canopy removal affected neither the number of species nor their distribution among trophic groups, and the algal community was only slightly affected. The abundance and biomass of mobile invertebrates, however, were greatly reduced in the absence of canopy. This indicates an important effect of the dominant alga on the higher trophic levels of the community. At this tidal level, the canopy did not seem to affect the community by dampening the environmental stress but by providing food, habitat or both.  相似文献   

3.
Livestock grazing is the most widespread land use on Earth and can have negative effects on biodiversity. Yet, many of the mechanisms by which grazing leads to changes in biodiversity remain unresolved. One reason is that conventional grazing studies often target broad treatments rather than specific parameters of grazing (e.g., intensity, duration, and frequency) or fail to account for historical grazing effects. We conducted a landscape‐scale replicated grazing experiment (15,000 km2, 97 sites) to examine the impact of past grazing management and current grazing regimes (intensity, duration, and frequency) on a community of ground‐dwelling herpetofauna (39 species). We analyzed community variables (species richness and composition) for all species and built multiseason patch‐occupancy models to predict local colonization and extinction for the 7 most abundant species. Past grazing practices did not influence community richness but did affect community composition and patch colonization and extinction for 4 of 7 species. Present grazing parameters did not influence community richness or composition, but 6 of the 7 target species were affected by at least one grazing parameter. Grazing frequency had the most consistent influence, positively affecting 3 of 7 species (increased colonization or decreased extinction). Past grazing practice affected community composition and population dynamics in some species in different ways, which suggests that conservation planners should examine the different grazing histories of an area. Species responded differently to specific current grazing practices; thus, incentive programs that apply a diversity of approaches rather than focusing on a change such as reduced grazing intensity should be considered. Based on our findings, we suggest that determining fine‐scale grazing attributes is essential for advancing grazing as a conservation strategy.  相似文献   

4.
Growth of the abalone, Haliotis midae, was investigated at Port Alfred, on the south coast of South Africa, using both new and established techniques. A new method for aging animals is described, which makes use of shell autofluorescence under UV light to visualise internal growth bands. The deposition of growth bands was validated using measurements from shells of known age and, at one site, comparing growth estimates to those from cohort analysis undertaken at the same site. The new technique is far less time consuming and labour intensive than previously described methods; it is also non-destructive and proved to have potential for the reliable and rapid assessment of growth in large-scale studies. Growth of H. midae was also investigated at nine other sites, incorporating the full distribution range of the species. Systematic geographic variation in growth was observed along the South African coastline. Statistically significant differences existed among sites in growth rates for animals <4 years and between 4 and 6 years and in the mean maximum sizes attained. Generally, H. midae from the south/southeast coast were found to have faster growth rates, smaller mean maximum sizes and were assumed to attain sexual maturity (determined in previous studies) earlier than those along the southwest/west coast. The geographic differences in estimates of growth observed have significant implications for future modelling approaches and indicate that present national management strategies are not appropriate as they fail to take regional variability into account.  相似文献   

5.
The effect of amphipod grazing on algal community structure was studied within a 75 l refuge tank connected to a 6500 l closed-system, coral reef microcosm. When amphipods (Ampithoe ramondi) were absent or present in low numbers, a high biomass of mostly filamentous algal species resulted, including Bryopsis hypnoides, Centroceras clavulatum, Ceramium flaccidum, Derbesia vaucheriaeformis, Enteromorpha prolifera, Giffordia rallsiae, and Polysiphonia havanensis. These microalgae disappeared when amphipod density increase beyond approximately 1 individual cm-2 of tank surface. The macroalga Hypnea spinella germinated in the system in association with amphipod tube sites. H. spinella plants remained rare until filamentous species were eliminated by amphipod grazing. Feeding trials confirmed that H. spinella was protected from grazing by its size rather than a chemical defense strategy. The H. spinella community we observed is similar to the flora described on algal ridges where physical conditions exclude fish grazing. We suggest that amphipods and similar micrograzers are responsible for the algal community structure of these ridges. Caging experiments may be subject to similar effects from increased amphipod grazing on the algae. Introduction of fish that are amphipod predators into the refuge tank caused an increase in algal species diversity but total H. spinella growth rates fell from 25 g dry wt month-1 to less than 8 g dry wt month-1. We describe amphipod behavior in relation to changes in population density and food supply, and we stress the potential for increasing the productivity of commercial seaweeds through maintenance of appropriate amphipod species in mariculture facilities.  相似文献   

6.
Variabilities in the responses of several South African red and green macroalgae to direct grazing and the responses of one green alga to cues from grazers were tested. We used two feeding experiments: (1) testing the induced responses of three red and one green algae to direct grazing by mesograzers and (2) a multi-treatment experiment, in which the direct and indirect effects of one macrograzer species on the green alga Codium platylobium were assessed. Consumption rates were assessed in feeding assays with intact algal pieces and with agar pellets containing non-polar extracts of the test algae. Defensive responses were induced for intact pieces of Galaxaura diessingiana, but were not induced in pellets, suggesting either morphological defence or chemical defence using polar compounds other than polyphenols. In contrast, exposure to grazing stimulated consumption of Gracilaria capensis and Hypnea spicifera by another grazing species. In the multi-treatment experiment, waterborne cues from both grazing and non-grazing snails induced defensive algal traits in C. platylobium. We suggest that inducible defences among macroalgae are not restricted to brown algae, but that both the responses of algae to grazers and of grazers to the defences of macroalgae are intrinsically variable and complex.  相似文献   

7.
Three functionally different macrofaunal species (the filter- and/or surface deposit-feeding polychaete Hediste diversicolor, and the suspension-feeding bivalves Mya arenaria and Cerastoderma glaucum) were introduced as single- and two-species treatments into microcosms containing sandy sediment with a natural meiofaunal community. H. diversicolor is a burrowing species building a system of galleries, C. glaucum lives actively near the sediment surface acting as a biodiffuser and M. arenaria buries deeply and leads a sessile lifestyle. It is shown that H. diversicolor extended the vertical distribution of meiofauna into deeper sediment layers compared to the control and non-Hediste treatments. The response of the nematode community varied significantly among treatments and was dependant on the macrobenthic species composition but not on the species number. Nematode assemblages in all treatments with the polychaete, both in monoculture and with either bivalve, differed significantly from those recorded in other treatments and were more similar than replicates within any other single treatment. H. diversicolor also appeared to have stimulated nematode species diversity. The present study demonstrated that the impact of macrobenthic assemblages on meiofauna is not a simple summation of individual species effects but is species specific.  相似文献   

8.
The effects of small and large-scale roughness, overstory development, competition for space with sessile animals, and grazing on algal community development in a subtidal Macrocystis pyrifera forest were examined using specially prepared concrete blocks as substrata. Variation in small-scale roughness (crevices and grooves in the order of 0.1 to 3 mm width and depth) had no significant effects on community composition. However, M. pyrifera colonization, algal diversity, and sessile animal biomass were higher near the upper horizontal edges of blocks and concrete prisms. This “edge” effect may result from a combination of increased spore and larval settlement and enhanced growth of plants and animals associated with the turbulent eddies formed around these obstructions. Natural and experimentally produced variations in the algal overstory demonstrated that the presence of an overstory can reduce algal diversity and cover beneath. Caging experiments suggest that predatory fishes and sea-stars indirectly affect the algal community by removing sessile animals (primarily bryozoans) which compete with the algae for space. The exclusion of grazers resulted in increased growth of Gigartina spp. Selective grazing on this genus may account for its reduced abundance in the study area.  相似文献   

9.
All California abalone species have been shown to be susceptible to infection with the bacterial agent of abalone withering syndrome (WS), although expression of signs of the disease may vary between species and with environmental conditions. We examined thermal modulation of WS expression in green abalone Haliotis fulgens at temperatures mimicking El Niño (18.0°C) and La Niña (14.2°C) events in southern California. In contrast to results obtained from previous experiments with red abalone, H. rufescens, the higher temperature did not result in higher infection intensities of the causative agent of the disease nor increase in clinical signs of disease. These results demonstrate clear differences in thermal regulation of disease expression between abalone species, and provide further data suggesting that green abalone should be a target species of recovery efforts in southern California, where WS is endemic.  相似文献   

10.
P. J. Vine 《Marine Biology》1974,24(2):131-136
Aggressive behaviour of the fishes Pomacentrus lividus Bl. Schn. and Acanthurus sohal Forskal from the Red Sea is briefly described, and its effect on intensity of algal grazing by herbivorous fish is demonstrated by settlement experiments. Green filamentous alga settles and grows at shallow depths over large areas of coral reefs, but is cropped by fishes to such an extent that it forms only a thin patchy matting on dead corals. Within pomacentrid territories, the alga forms a thicker matting on loosely cemented coralline rubble. Optimum depth range for growth occurs at less than 20 m. Rich growths of green filamentous alga, such as those which occur within pomacentrid territories or on settlement plates protected by wire netting cages, inhibit settlement of “lithothamnion” and invertebrates. While rasping and grazing fish feeders such as parrot fish and surgeon fish limit the distribution of certain invertebrates such as spirorbids, in shallow water it is also true that, were it not for such active removal of green filamentous alga, “lithothamnion” and many invertebrates would find ewer surfaces suitable for settlement.  相似文献   

11.
Swemmer AM  Knapp AK 《Ecology》2008,89(10):2860-2867
The aboveground net primary productivity (ANPP) of grass communities in grasslands and savannas is primarily determined by precipitation quantity. Recent research, motivated by predictions of changes in the distribution of rainfall events by global climate change models, indicates that ANPP may be affected by rainfall distribution as much as by annual totals. Grazing and community composition are also known to affect grassland ANPP. The manner in which interactions between rainfall distribution, grazing, and community composition affect the relationship between precipitation and ANPP represents a critical knowledge gap. The effects of community composition and grazing on aboveground growth responses to intraseasonal variation in water availability were investigated at seven grassland sites with a nonselective clipping experiment. The aboveground growth of the dominant C4 species at each site was measured at regular intervals for 2-3 growing seasons in the presence or absence of regular defoliation. In the absence of defoliation, there was a general lack of synchrony of intraseasonal growth among co-occurring species. Variation in growth rates was high and was only partially explained by variation in rainfall. Regular defoliation increased growth synchrony at all sites, but changes in growth responses to rainfall varied between sites. These results suggest that community composition will be important in determining ANPP-precipitation relationships under conditions of altered rainfall distribution. However this effect appears to be a result of species responding differently to soil water or other resources rather than to rainfall per se. Grazing may override the effects of community composition by reducing differences in growth patterns between species and has the potential to weaken precipitation controls on ANPP.  相似文献   

12.
Bishop MJ  Byers JE  Marcek BJ  Gribben PE 《Ecology》2012,93(6):1388-1401
Co-occurring foundation species can determine biological community structure via facilitation cascades. We examined the density dependencies of facilitation cascades, including how the density of a basal foundation species influences the density of secondary foundation species, and how the density of secondary foundation species influences community structure. The system in which we assessed density dependencies was a temperate mangrove forest in which pneumatophores trap the fucoid alga Hormosira banksii and provide substrate for the oyster, Saccostrea glomerata. The alga and oyster in turn determine benthic community structure. In the field, algal biomass was positively correlated with pneumatophore density. Oysters, by contrast, were highly over-dispersed and correlated with the presence/absence of pneumatophores. Epifaunal abundance and species richness were positively correlated with algal and oyster abundance, but their effects were independent. The positive effect of pneumatophore density on epifauna was primarily an indirect effect of trapping more algae. Pneumatophores did not directly influence invertebrate communities. Experiments revealed that, at very low pneumatophore densities, algal retention was insufficient to facilitate epifauna above that found on pneumatophores alone. At higher densities, however, increasing the density of pneumatophores increased algal retention, and the density and diversity of associated invertebrates. Shading by the mangrove canopy reduced algal biomass but did not modify the density-dependent nature of the cascade. Our results extend facilitation theory by showing that the density of both basal and secondary foundation species can be critical in triggering facilitation cascades. Our study also reveals that, where foundation species co-occur, multiple, independent cascades may arise from a single basal facilitator. These findings enhance our understanding of the role of density-dependent facilitation cascades in community assembly.  相似文献   

13.
Intensive fishing can cause dramatic, long-lasting shifts in benthic habitat. This study used three approaches to test whether overharvesting of blacklip abalone (Haliotis rubra) can cause a shift in benthic habitat to a configuration that is unsuitable for abalone, on the east coast of Tasmania, Australia. After 18 months of removing abalone from rocks, encrusting red algae (ERA) became overgrown by filamentous and foliose algae, sessile invertebrates and accumulated sediment. The differences in the community composition between locations, sites nested within locations and rocks were minor. Throughout the study, abalone were largely associated with areas of rock covered in ERA but avoided other habitats. A transplant experiment demonstrated that abalone preferred areas of rock covered in ERA but move away from overgrown rocks. These results suggest overharvesting of abalone results in a shift to benthic habitat poorly preferred by abalone. This could form a positive feedback loop that limits recovery of abalone populations and ERA.  相似文献   

14.
Despite being a key zooplankton group, knowledge on krill biology from the Arctic is inadequate. The present study examine the functional biology and evaluate the trophic role of krill in the Godth?bsfjord (64°N, 51°W) SW Greenland, through a combination of fieldwork and laboratory experiments. Krill biomass was highest in the middle fjord and inner fjord, whereas no krill was found offshore. The dominating species Thysanoessa raschii revealed a type III functional response when fed with the diatom Thalassiosira weissflogii. At food saturation, T. raschii exhibited a daily ration of 1% body C d?1. Furthermore, T. raschii was capable of exploiting plankton cells from 5 to 400???m, covering several trophic levels of the pelagic food web. The calculated grazing impact by T. raschii on the fjord plankton community was negligible. However, the schooling and migratory behaviour of krill will concentrate and elevate the grazing in specific areas of the euphotic zone.  相似文献   

15.
Failure to account for interactions between endangered species may lead to unexpected population dynamics, inefficient management strategies, waste of scarce resources, and, at worst, increased extinction risk. The importance of species interactions is undisputed, yet recovery targets generally do not account for such interactions. This shortcoming is a consequence of species‐centered legislation, but also of uncertainty surrounding the dynamics of species interactions and the complexity of modeling such interactions. The northern sea otter (Enhydra lutris kenyoni) and one of its preferred prey, northern abalone (Haliotis kamtschatkana), are endangered species for which recovery strategies have been developed without consideration of their strong predator–prey interactions. Using simulation‐based optimization procedures from artificial intelligence, namely reinforcement learning and stochastic dynamic programming, we combined sea otter and northern abalone population models with functional‐response models and examined how different management actions affect population dynamics and the likelihood of achieving recovery targets for each species through time. Recovery targets for these interacting species were difficult to achieve simultaneously in the absence of management. Although sea otters were predicted to recover, achieving abalone recovery targets failed even when threats to abalone such as predation and poaching were reduced. A management strategy entailing a 50% reduction in the poaching of northern abalone was a minimum requirement to reach short‐term recovery goals for northern abalone when sea otters were present. Removing sea otters had a marginally positive effect on the abalone population but only when we assumed a functional response with strong predation pressure. Our optimization method could be applied more generally to any interacting threatened or invasive species for which there are multiple conservation objectives. Definición de Metas de Recuperación Realistas para Dos Especies en Peligro Interactuantes, Enhydra lutris y Haliotis kamtschatkana  相似文献   

16.
The species composition of macrofauna associated with floating seaweed rafts is highly variable and influenced by many factors like spatial and temporal variation, period since detachment and probably also the seaweed species. The presence of seaweed preferences was assessed by a combination of in situ seaweed samplings and multiple-choice aquarium experiments in a controlled environment, using the seaweed-associated grazing organisms Idotea baltica and Gammarus crinicornis. Results from the sampling data confirm that the seaweed composition influences macrofaunal species composition and abundance: samples dominated by Sargassum muticum displayed higher densities but lower diversities compared to samples dominated by Ascophyllum nodosum and Fucus vesiculosus. Seaweed preference was also apparent from the multiple-choice experiments, but did not exactly match the results of the community analysis: (1) I. baltica had high densities in seaweed samples (SWS) dominated by F. vesiculosus and A. nodosum, while in the experiments, this isopod was most frequently associated with Enteromorpha sp. and F. vesiculosus, and fed mostly on S. muticum, A. nodosum and Enteromorpha sp.; (2) G. crinicornis had high densities in SWS dominated by F. vesiculosus, while in the experiments, this amphipod was most frequently associated with S. muticum, but fed most on A. nodosum and F. vesiculosus. It is clear from the laboratory experiments that preference for habitat (shelter) and food can differ among seaweed species. However, food and habitat preferences are hard to assess because grazer preference may change if choices are increased or decreased, if different sizes of grazers are used, or if predators or other grazers are added to the experiments. The effects of seaweed composition may also be blurred due to the obligate opportunistic nature of a lot of the associated macrofaunal species.  相似文献   

17.
Few studies examine the long-term effects of changing predator size and abundance on the habitat associations of resident organisms despite that this knowledge is critical to understand the ecosystem effects of fishing. Marine reserves offer the opportunity to determine ecosystem-level effects of manipulated predator densities, while parallel monitoring of adjacent fished areas allows separating these effects from regional-scale change. Relationships between two measures of benthic habitat structure (reef architecture and topographic complexity) and key invertebrate species were followed over 17 years at fished and protected subtidal rocky reefs associated with two southern Australian marine reserves. Two commercially harvested species, the southern rock lobster (Jasus edwardsii) and blacklip abalone (Haliotis rubra) were initially weakly associated with habitat structure across all fished and protected sites. The strength of association with habitat for both species increased markedly at protected sites 2 years after marine reserve declaration, and then gradually weakened over subsequent years. The increasing size of rock lobster within reserves apparently reduced their dependency on reef shelters as refuges from predation. Rising predation by fish and rock lobster in the reserves corresponded with weakening invertebrate–habitat relationships for H. rubra and sea urchins (Heliocidaris erythrogramma). These results emphasise that animal–habitat relationships are not necessarily stable through time and highlight the value of marine reserves as reference sites. Our work shows that fishery closures to enhance populations of commercially important and keystone species should be in areas with a range of habitat features to accommodate shifting ecological requirements with ontogenesis.  相似文献   

18.
Collins SL  Smith MD 《Ecology》2006,87(8):2058-2067
Natural disturbances affect spatial and temporal heterogeneity in plant communities, but effects vary depending on type of disturbance and scale of analysis. In this study, we examined the effects of fire frequency (1-, 4-, and 20-yr intervals) and grazing by bison on spatial and temporal heterogeneity in species composition in tallgrass prairie plant communities. Compositional heterogeneity was estimated at 10-, 50-, and 200-m2 scales. For each measurement scale, we used the average Euclidean Distance (ED) between samples within a year (2000) to measure spatial heterogeneity and between all time steps (1993-2000) for each sample to measure temporal heterogeneity. The main effects of fire and grazing were scale independent. Spatial and temporal heterogeneity were lowest on annually burned sites and highest on infrequently burned (20-yr) sites at all scales. Grazing reduced spatial heterogeneity and increased temporal heterogeneity at all scales. The rate of community change over time decreased as fire frequency increased at all scales, whereas grazing had no effect on rate of community change over time at any spatial scale. The interactive effects of fire and grazing on spatial and temporal heterogeneity differed with scale. At the 10-m2 scale, grazing increased spatial heterogeneity in annually burned grassland but decreased heterogeneity in less frequently burned areas. At the 50-m2 scale, grazing decreased spatial heterogeneity on 4-yr burns but had no effect at other fire frequencies. At the 10-m scale, grazing increased temporal heterogeneity only on 1- and 20-yr burn sites. Our results show that the individual effects of fire and grazing on spatial and temporal heterogeneity in mesic prairie are scale independent, but the interactive effects of these disturbances on community heterogeneity change with scale of measurement. These patterns reflect the homogenizing impact of fire at all spatial scales, and the different frequency, intensity, and scale of patch grazing by bison in frequently burned vs. infrequently burned areas.  相似文献   

19.
Background and aim Grassy field margins have a high relevance in agricultural landscapes regarding the preservation of typical arthropod communities, their biodiversity and the ecological system functions linked with it. The structure of terrestrial communities is affected by anthropogenic impairment, which can lead to the replacement of sensitive by more tolerant species. The negative influence of pesticides on fauna and flora as well as the associated functional aspects (ecological system functions) and the reduction of biodiversity are undisputed since longer for agrarian systems and can also be assumed for grassy field margins due to spray-drift. The case study presented here examined the effect of influences related to utilization on the plant and arthropod communities of grassy field margins. Reference sites, on which due to missing farming in the direct surrounding countryside no utilization influences on the communities were present, were compared to non-target sites, on which these influences could not be excluded. Sites in three German macrochores were examined: in the Jülicher Börde, at the northeastern edge of the Leipziger low lands and in the area Mainfranken near Würzburg, all of them intensely used agricultural landscapes. Beside the vegetation, the epigeic arthropod communities of carabid beetles, spiders, springtails, hymenopterans, hover flies and ladybirds as well as abiotic parameters were included in the analysis. The aim of the study was the development of a statistical exclusion procedure which is capable to quantify the amount of variation in field community data which can be attributed to isolated factors. Special attention was paid to non-observable utilization impacts like undocumented pesticide application. The extraction of patterns of residual variance allowed for the uncovering of masked effects on a scale below the obvious abundance pattern. Materials and methods The variability in the species composition was visualized with the help of non-metric multi-dimensional scaling (NMDS). Indicator species analysis revealed those species which could be recognized as statistically significant indicators for local conditions. The relationship between the species composition and the environmental factors was statistically modeled by canonical correspondence analysis. By variance partitioning it was possible to extract the variance portion which could be bound to a set of covariables. For the remaining residual variance it could not be excluded that this resulted from a pesticide influence. Results The analyses based on the ecological distance (Bray-Curtis) showed that the communities in references sites and non-target sites could be clearly distinguished in all three landscapes. Based on the portions of variance which could be explained statistically by a utilization related influence, two different directions of reaction to the utilization related variables could be stated. On the one hand there were sensitive species, showing reduced abundances in the non-target sites, on the other hand there were species increasing in abundance in the non-target sites, recruiting from the group of strong competitors. Discussion By the use of residual variances a clear influence of utilization related parameters on the community of soil arthropods and vegetation could be shown. The observed abundances shifts between reference sites and non-target sites in the raw data were attributed to a multi-dimensional factor complex which could be split up by the use of partial ordination methods, quantifying the relationships to the utilization related parameters. It was demonstrated that special utilization correlated patterns could be found in the raw data after eliminating the influence of the covariables. Conclusions Utilization related influences in the non-target sites evened out the characteristic communities for the three landscapes towards a comprehensive, ubiquitous species composition. The hypothesis of decreasing abundance of sensitive species and the augmentation of tolerant species due to a potential pesticide influence could be underpinned and quantified. Sensitive species which showed a significant reduction in abundance between reference and non-target sites showed a much higher sensitivity to the influences and thus were assigned a higher indicator potential than tolerant species. From the group of the sensitive species Pardosa palustris and Poecilus cupreus could be isolated as two promising macrochore-specific indicator species for the masked effects. Recommendations and perspectives A macrochore-specific assessment of utilization effects was requested for future studies due to the different sensitivities of the species in the three landscapes. The elaboration and specifying of reference conditions for terrestrial agrarian systems is an important task for the future. The presented approach deduces a macrochore-specific, complex effect pattern of anthropogenic impairment on terrestrial species communities. It can be used to extract masked effects and by this facilitates a more sustainable use of e.g. plant protection products. Furthermore it provides an opportunity to validate evaluation systems for the effects of utilization impacts on terrestrial vegetation and arthropods. Additionally the species sensitivities with respect to the macrochores allow a regionalized assessment of ecotoxicological effects and the integration into spatially explicit effect assessment models.  相似文献   

20.
Fishing has wide-ranging impacts on marine ecosystems. One of the most pervasive signs of intensive fishing is "fishing down the food web", with landings increasingly dominated by smaller species from lower trophic levels. Decreases in the trophic level of landings are assumed to reflect those in fish communities, because size-selective mortality causes decreases in the relative abundance of larger species and in mean body size within species. However, existing analyses of fishing impacts on the trophic level of fish communities have focused on the role of changes in species composition rather than size composition. This will provide a biased assessment of the magnitude of fishing impacts, because fishes feed at different trophic levels as they grow. Here, we combine body size versus trophic level relationships for North Sea fishes (trophic level assessed using nitrogen stable-isotope analysis) with species-size-abundance data from two time-series of trawl-survey data (whole North Sea 1982-2000, central and northern North Sea 1925-1996) to predict long-term trends in the trophic structure of the North Sea fish community. Analyses of the 1982-2000 time-series showed that there was a slow but progressive decline in the trophic level of the demersal community, while there was no trend in the trophic level of the combined pelagic and demersal community. Analyses of the longer time-series suggested that there was no trend in the trophic level of the demersal community. We related temporal changes in trophic level to temporal changes in the slopes of normalised biomass size-spectra (which theoretically represent the trophic structure of the community), mean log2 body mass and mean log2 maximum body mass. While the size-based metrics of community structure showed long-term trends that were consistent with the effects of increased fishery exploitation, these trends were only correlated with trophic level for the demersal community. Our analysis suggests that the effects of fishing on the trophic structure of fish communities can be much more complex than previously assumed. This is a consequence of sampled communities not reflecting all the pathways of energy transfer in a marine ecosystem and of the absence of historical data on temporal and spatial changes in the trophic level of individuals. For the North Sea fish community, changes in size structure due to the differential effects of fishing on species and populations with different life histories are a stronger and more universal indicator of fishing effects than changes in mean trophic level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号