首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, rice straw was esterified thermochemically with citric acid (CA) to produce potentially biodegradable cationic sorbent. The modified rice straw (MRS) and crude rice straw (CRS) were evaluated for their methylene blue (MB) removal capacity from aqueous solution. The effects of various experimental parameters (e.g., initial pH, sorbent dose, dye concentration, ion strength, and contact time) were examined. The ratio of MB sorbed on CRS increased as the initial pH was increased from pH 2 to 10. For MRS, the MB removal ratio came up to the maximum value beyond pH 3. The 1.5g/l or up of MRS could almost completely remove the dye from 250mg/l of MB solution. The ratio of MB sorbed kept above 98% over a range from 50 to 450mg/l of MB concentration when 2.0g/l of MRS was used. Increase in ion strength of solution induced decline of MB sorption. The isothermal data fitted the Langmuir model. The sorption processes followed the pseudo-first-order rate kinetics. The intraparticle diffusion rate constant (k(id)) was greatly increased due to modification.  相似文献   

2.
Removal of selenium (Se) from agricultural drainage water is very important for protecting wildlife in wetland systems. We conducted a series of experiments on selenite [Se(IV)] adsorption and selenate [Se(VI)] reduction to determine Se removal from drainage water amended with 1000 microg/L of Se(VI) or Se(IV) and 5 g of rice (Oryza sativa L.) straw. Under sterile conditions, the added Se(IV) was not adsorbed to the rice straw within 2 d of the experiment and the added Se(VI) was not reduced within 14 d. In contrast, added Se(VI) in a nonsterile rice-straw solution was reduced rapidly, from 930 microg/L at Day 3 to 20 microg/L at Day 5, with an increase in unprecipitated elemental Se [Se(0)] and total Se(0). In the last several days of the experiments, unprecipitated Se(0) was the major Se form in the rice-straw solution, with a small amount of organic Se(-II). This study showed that Se removal from drainage water in the presence of rice straw involves a two-step process. The first is the microbial reduction of Se(VI) to Se(IV) and then to colloidal Se(0). The second is flocculation and precipitation of colloidal Se(0) to the bottom of the experimental flasks and the surface of rice straw.  相似文献   

3.
The leaching characteristics of selenium from several bituminous and subbituminous coal fly ashes under different pH conditions were investigated using batch methods. Results indicated that pH had a significant effect on selenium leaching from bituminous coal ash. The minimum selenium leaching occurred in the pH range between 3 and 4, while the maximum selenium leaching occurred at pH 12. The release of selenium from subbituminous coal ashes was very low for the entire experimental pH range, possibly due to the high content of calcium which can form hydration or precipitation products as a sink for selenium. The adsorption results for different selenium species indicated that Se(VI) was hardly adsorbable on either bituminous coal ashes or subbituminous coal ashes at any pH. However, Se(IV) was highly adsorbed by bituminous coal ashes under acidic pH conditions and was mostly removed by subbituminous coal ashes across the entire pH range. This result suggests that the majority of selenium released from the tested fly ashes was Se(IV). A speciation-based model was developed to simulate the adsorption of Se(IV) on bituminous coal fly ash, and the pH-independent adsorption constants of HSeO3* and SeO3 2* were determined. The modeling approach is useful for understanding and predicting the release process of selenium from fly ash.  相似文献   

4.
Coconut (Cocos nucifera) husk, an agricultural waste, has been thoroughly investigated for the removal of toxic Cd(II), Cr(III) and Hg(II) ions from aqueous media. The parameters like nature and composition of electrolyte, concentration of toxic ions, dosage of coconut husk, and equilibration time between the two phases were optimized for their maximum accumulation onto the solid surface. The effect of common ions on the uptake of metal ions has been monitored under optimal conditions. The variation of retention of each metal ion with temperature was used to compute the thermodynamic quantities DeltaH, DeltaS and DeltaG. The values 18.1+/-0.6 kJmol(-1), 74+/-2 Jmol(-1)K(-1), and -3.8+/-0.04 kJmol(-1) at 298 K; 10.8+/-0.8 kJmol(-1), 48.8+/-2.7 Jmol(-1)K(-1), and -4.6+/-0.3 kJmol(-1) at 298 K; and -37.4+/-2k Jmol(-1), 105+/-7 Jmol(-1)K(-1) and -2.58+/-0.5 kJmol(-1) at 298 K were obtained for Cd(II), Cr(III) and Hg(II) ions, respectively. The sorption data were analysed by applying different sorption isotherms. The sorption capacity and energy were evaluated for each metal ion. The values of the Freundlich constants 1/n and C(m) were 0.92+/-0.04 and 52.6+/-22.2 mmolg(-1); 0.85+/-0.05 and 56.0+/-0.03 mmolg(-1); and 0.88+/-0.03 and 6.84+/-0.45 mmolg(-1) for Cd(II) Cr(III) and Hg(II) ions, respectively. Similarly, the Dubinin-Radushkevich (D-R) constants beta, X(m,) and E were evaluated for the three metal ions. To check the selectivity of the sorbent, sorption of a number of elements was measured under similar conditions. Separation of Zn(II) from Cd(II); Cr(III) from I(I), Zr(IV), Se(IV), and Hg(II) from Se(IV) and Zn(II) can be achieved using this sorbent. This cheap material has potential applications in analytical chemistry, water decontamination, industrial effluent treatment and in pollution abatement.  相似文献   

5.
Fate of colloidal-particulate elemental selenium in aquatic systems   总被引:2,自引:0,他引:2  
Bacterial reduction of selenate [Se(VI)] to elemental Se [Se(0)] is considered an effective bioremediation technique to remove selenium (Se) from agricultural drainage water. However, the fate of the newly formed Se(0) in aquatic systems is not known when it flows out of the treatment system. A set of laboratory experiments was conducted to determine the fate of the colloidal-particulate Se(0) in a water column and in a water-sediment system. Results showed that the newly formed colloidal-particulate Se(0) followed two removal pathways in aquatic systems: (i) flocculation-sedimentation to the bottom of the water and (ii) oxidation to selenite [Se(IV)] and Se(VI). During 58 d of the experiments, 51% of the added Se(0) was precipitated to the bottom of the water and 47% was oxidized to Se(IV) in the water column. In the water-sediment system, Se(IV) in the water accounted for 21 to 25% of the added Se(0). Adsorption of Se(IV) to the bottom sediment resulted in a relatively low amount of Se(IV) in the water. This study indicates that the newly formed Se(0) may be an available form of Se for uptake by organisms if it flows to aquatic systems from a treatment site. Therefore, an effective bioremediation system for removing Se from drainage water must reduce Se(VI) to Se(0) and remove Se(0) directly from the drainage water.  相似文献   

6.
Bacterial reduction of the Se oxyanions selenate [Se(VI)] and selenite [Se(IV)] to elemental selenium [Se0] is an important biological process in removing Se from drainage water. This study was conducted to characterize the molecular diversity of bacterial populations involved in Se reduction of drainage water amended with rice (Oryza sativa L.) straw and also to monitor the bacterial community shifts during the course of the study. Selenate was removed in the drainage water by the bacteria 5 to 6 d after addition of rice straw. Six Se(VI)- and 32 Se(IV)-reducing bacteria were isolated from rice straw containing sterilized drainage water. Three Se(VI)- and two Se(IV)-reducing bacteria were also isolated from the drainage water. Identification of Se(VI)- and Se(IV)-reducing bacteria by 16S rDNA sequence analysis showed a broad phylogenetic diversity in Se-reducing assemblages. Three major phyla (Proteobacteria, Actinobacteria, and Firmicutes) of bacterial domain with numerous classes, orders, and families constituted the Se-reducing bacterial community. We documented changes in the composition of bacterial assemblages in the drainage water amended with rice straw using polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) of 16S rDNA. The Shannon-Weaver index (H') revealed higher bacterial diversity at Day 6 in the sterilized and Day 4 in the non-sterilized drainage water amended with rice straw. The results of this study suggest that rice straw, a good source of carbon and energy, harbors a wide range of bacteria useful in Se reduction and may be used in removing Se from drainage water.  相似文献   

7.
Removal of selenate from water by zerovalent iron   总被引:1,自引:0,他引:1  
Zerovalent iron (ZVI) has been widely used in the removal of environmental contaminants from water. In this study, ZVI was used to remove selenate [Se(VI)] at a level of 1000 microg L(-1) in the presence of varying concentrations of Cl-, SO(2-)4, NO(-)3, HCO(-)3, and PO(3-)4. Results showed that Se(VI) was rapidly removed during the corrosion of ZVI to iron oxyhydroxides (Fe(OH)). During the 16 h of the experiments, 100 and 56% of the added Se(VI) was removed in 10 mM Cl- and SO(2-)4 solutions under a closed contained system, respectively. Under an open condition, 100 and 93% of the added Se(VI) were removed in the Cl- and SO(2-)4 solutions, respectively. Analysis of Se species in ZVI-Fe(OH) revealed that selenite [Se(IV)] and nonextractable Se increased during the first 2 to 4 h of reaction, with a decrease of Se(VI) in the Cl- experiment and no detection of Se(VI) in the SO(2-)4 experiment. Two mechanisms can be attributed to the rapid removal of Se(VI) from the solutions. One is the reduction of Se(VI) to Se(IV), followed by rapid adsorption of Se(IV) to Fe(OH). The other is the adsorption of Se(VI) directly to Fe(OH), followed by its reduction to Se(IV). The results also show that there was little effect on Se(VI) removal in the presence of Cl- (5, 50, and 100 mM), NO(-)3 (1, 5, and 10 mM), SO(2-)4 (5 mM), HCO(-)3 (1 and 5 mM), or PO(3-)4 (1 mM) and only a slight effect in the presence of SO(2-)4 (50 and 100 mM), HCO(-)3 (10 mM), and PO(3-)4 (5 mM) during a 2-d experiment, whereas 10 mM PO(3-)4 significantly inhibited Se(VI) removal. This work suggests that ZVI may be an effective agent to remove Se from Se-contaminated agricultural drainage water.  相似文献   

8.
The sorption of aqueous lead on carbonate-hydroxyapatite (CHAp) is a complicated non-homogeneous solid/water reaction, which from the kinetic point of view has two stages. In the first stage, the reaction rate is so fast and the kinetic pathway so intricate that further research is required. In the second stage, the reaction rate slows down and the reaction process follows that of a first-order kinetic equation. Experimental results show that the relationship between the reaction rate constant k(1) and temperature T agrees with the Arrhenius equation, and that the activation energy of sorption (E(a)) is 11.93 kJ/mol and the frequency factor (A) is 2.51/s. The reaction rate constant k(1) increases with the Pb(2+) initial concentration and decreasing pH, but with increasing CHAp dosage. X-ray diffraction (XRD), scanning electron microscopy with energy dispersion spectrum (SEM-EDS) and toxicity characteristic leaching procedure (TCLP) tests indicate that the main sorption mechanism is dissolution-precipitation, in conjunction with surface sorption.  相似文献   

9.
In the present work, the leaves of Azadirachta indica (locally known as the Neem tree) in the form of a powder were investigated as a biosorbent of dyes taking aqueous Congo Red solution as a model system. The sorbent was made from mature Neem leaves and was investigated in a batch reactor under variable system parameters such as concentration of the aqueous dye solution, agitation time, adsorbent amount, pH, and temperature. An amount of 0.6 g of the Neem leaf powder (NLP) per litre could remove 52.0-99.0% of the dye from an aqueous solution of concentration 2.87 x 10(-2) mmol l(-1) with the agitation time increasing from 60 to 300 min. The interactions were tested with respect to both pseudo first-order and second-order reaction kinetics; the latter was found to be more suitable. Considerable intra-particle diffusion was found to occur simultaneously. The sorption process was in conformity with Langmuir and Freundlich isotherms yielding values of the adsorption coefficients in the following ranges: Freundlich n: 0.12-0.19, Kf: 0.1039-0.2648 L g(-1); Langmuir qm: 41.24-128.26 g kg(-1), b: 443.3-1898.0 l mmol(-1), which supported favourable adsorption. The Langmuir monolayer capacity (qm) was high and the values of the coefficient b indicated the equilibrium, dye + NLP = dye...NLP being shifted overwhelmingly towards adsorption. Thermodynamically, the sorption process was exothermic with an average heat of adsorption of -12.75 kJ mol(-1). The spontaneity of the sorption process was also confirmed by the favourable values of Gibbs energy (mean values: -1.09 to -1.81 kJ mol(-1)) and entropy of adsorption (range: -18.97 to -56.32 J mol(-1)K(-1)). The results point to the effectiveness of the Neem leaf powder as a biosorbent for removing dyes like Congo Red from water.  相似文献   

10.
Under anoxic conditions, zerovalent iron (Fe(0)) reduces nitrate to ammonium and magnetite (Fe3O4) is produced at near-neutral pH. Nitrate removal was most rapid at low pH (2-4); however, the formation of a black oxide film at pH 5 to 8 temporarily halted or slowed the reaction unless the system was augmented with Fe(2+), Cu(2+), or Al(3+). Bathing the corroding Fe(0) in a Fe(2+) solution greatly enhanced nitrate reduction at near-neutral pH and coincided with the formation of a black precipitate. X-ray diffractometry and scanning electron microscopy confirmed that both the black precipitate and black oxide coating on the iron surface were magnetite. In this system, ferrous iron was determined to be a partial contributor to nitrate removal, but nitrate reduction was not observed in the absence of Fe(0). Nitrate removal was also enhanced by augmenting the Fe(0)-H2O system with Fe(3+), Cu(2+), or Al(3+) but not Ca(2+), Mg(2+), or Zn(2+). Our research indicates that a magnetite coating is not a hindrance to nitrate reduction by Fe(0), provided sufficient aqueous Fe(2+) is present in the system.  相似文献   

11.
If volatile organoselenides are to be analyzed for their stable Se isotope composition to elucidate sources and formation processes, organoselenides need to be trapped quantitatively to avoid artificial Se isotope fractionation. We developed an efficient trap of organoselenides to be used in microcosms designed to determine the Se isotope fractionation by microbial transformation of inorganic Se to volatile organoselenides. The recoveries of volatilized dimethyldiselenide (DMDSe) from aqueous standard solutions by activated charcoal and alkaline peroxide solution with subsequent freeze-drying and purification via a cation exchange resin were tested. Microcosm experiments with the Se-methylating fungus in a growth medium were conducted, and tightness of the microcosm was assessed by comparing mass balances of total Se of the fungus, medium, and trapped organoselenides with the supplied Se mass. At the end of the experiment, we calculated δSe values of the whole microcosm and compared them with the δSe value of supplied Se(IV) and Se(VI). Our results demonstrated that activated charcoal cannot be used for quantitative trapping of organoselenides because generally <64% of the outgassed DMDSe were recovered. The mean recovery of Se volatilized from an aqueous DMDSe standard trapped in alkaline peroxide, in contrast, was 96 ± 11% (SD) after 2 h ( = 4). The mass balances of total Se in microcosm experiments with alkaline peroxide traps run for 11 to 15 d were 96 ± 15 and 102 ± 2.4% for Se(IV) and Se(VI) ( = 3), respectively. The mass-weighted mean δSe values for the Se(IV) and Se(VI) batch experiments were -0.31 ± 0.05‰ ( = 3) and -0.76 ± 0.07‰ ( = 3), compared with -0.20 ± 0.10‰ and -0.69 ± 0.10‰ in the supplied Se oxyanions, respectively. We conclude that the alkaline peroxide trap can reliably be used to determine the Se isotope composition of organoselenides.  相似文献   

12.
Selenium stable isotope ratios are known to shift in predictable ways during various microbial, chemical, and biological processes, and can be used to better understand Se cycling in contaminated environments. In this study we used Se stable isotopes to discern the mechanisms controlling the transformation of oxidized, aqueous forms of Se to reduced, insoluble forms in sediments of Se-affected environments. We measured 80Se/76Se in surface waters, shallow ground waters, evaporites, digested plants and sediments, and sequential extracts from several sites where agricultural drainage water is processed in the San Joaquin Valley of California. Selenium isotope analyses of samples obtained from the Tulare Lake Drainage District flow-through wetland reveal small isotopic contrasts (mean difference 0.7%) between surface water and reduced Se species in the underlying sediments. Selenium in aquatic macrophytes was very similar isotopically to the NaOH and Na2SO3 sediment extracts designed to recover soluble organic Se and Se(0), respectively. For the integrated on-farm drainage management sites, evaporite salts were slightly (approximately 0.6%) enriched in the heavier isotope relative to the inferred parent waters, whereas surface soils were slightly (approximately 1.4%) depleted. Bacterial or chemical reduction of Se(VI) or Se(IV) may be occurring at these sites, but the small isotopic contrasts suggest that other, less isotopically fractionating mechanisms are responsible for accumulation of reduced forms in the sediments. These findings provide evidence that Se assimilation by plants and algae followed by deposition and mineralization is the dominant transformation pathway responsible for accumulation of reduced forms of Se in the wetland sediments.  相似文献   

13.
The oxidative remobilization of uranium from biogenic U(IV) precipitates was investigated in bioreduced sediment suspensions in contact with atmospheric O2 with an emphasis on the influence of Fe(II) and pH on the rate and extent of U release from the solid to the aqueous phase. The sediment was collected from the U.S. Department of Energy Field Research Center (FRC) site at Oak Ridge, Tennessee. Biogenic U(IV) precipitates and bioreduced sediment were generated through anaerobic incubation with a dissimilatory metal reducing bacterium Shewanella putrefaciens strain CN32. The oxidative remobilization of freshly prepared and 1-yr aged biogenic U(IV) was conducted in 0.1 mol/L NaNO3 electrolyte with variable pH and Fe(II) concentrations. Biogenic U(IV)O2(s) was released into the aqueous phase with the highest rate and extent at pH 4 and 9, while the U remobilization was the lowest at circumneutral pH. Increasing Fe(II) significantly decreased U remobilization to the aqueous phase. From 70 to 100% of the U in the sediments used in all the tests was extractable at the experiment termination (41 d) with a bicarbonate solution (0.2 mol/L), indicating that biogenic U(IV) was oxidized regardless of Fe(II) concentration and pH. Sorption experiments and modeling calculations indicated that the inhibitive effect of Fe(II) on U(IV) oxidative remobilization was consistent with the Fe(III) oxide precipitation and U(VI) sorption to this secondary phase.  相似文献   

14.
To minimize the disposal of highly reactive spent sorbent from a fluidized bed combustor, a new method for reactivation has been developed. The method consists of grinding the spent ash in a rotary mill, hydrating the ash with an excess of water, and mixing the wet ground ash with dry solids to absorb the excess water. The mixing process eliminates the formation of a concrete-like product that normally results as wet fluidized bed combustor ash ages. Pilot-scale combustion trials proved to be successful, and the process was scaled up using a 35MWt utility boiler at Purdue University. The test lasted for 3 days and resulted in net reduction of limestone sorbent use of 18%. The results generated in this work have been used to develop an economic evaluation for a 165MWe circulating fluidized bed (CFB) boiler, which projects significant savings due to reduction of limestone supply and ash disposal costs. The evaluation also suggests that the process is cost competitive with other processes, albeit that those processes have not been demonstrated at industrial scale. Furthermore, it also has the potential to make a small net reduction in CO(2) emissions, due to reduced limestone usage.  相似文献   

15.
Bioalkylation and colloid formation of selenium during selenate removal in upflow anaerobic sludge bed (UASB) bioreactors was investigated. The mesophilic (30 degrees C) UASB reactor (pH = 7.0) was operated for 175 d with lactate as electron donor at an organic loading rate of 2 g COD L(-1) d(-1) and a selenium loading rate of 3.16 mg Se L(-1) d(-1). Combining sequential filtration with ion chromatographic analysis for selenium oxyanions and solid phase micro extraction gas chromatography mass spectrometry (SPME-GC-MS) for alkylated selenium compounds allowed to entirely close the selenium mass balance in the liquid phase for most of the UASB operational runtime. Although selenate was removed to more than 98.6% from the liquid phase, a less efficient removal of dissolved selenium was observed due to the presence of dissolved alkylated selenium species (dimethylselenide and dimethyldiselenide) and colloidal selenium particles in the effluent. The alkylated and the colloidal fractions contributed up to 15 and 31%, respectively, to the dissolved selenium concentration. The size fractions of the colloidal dispersion were: 4 to 0.45 mum: up to 21%, 0.45 to 0.2 mum: up to 11%, and particles smaller than 0.2 mum: up to 8%. Particles of 4 to 0.45 mum were formed in the external settler, but did not settle. SEM-EDX analysis showed that microorganisms form these selenium containing colloidal particles extracellularly on their surface. Lowering the temperature by 10 degrees C for 6 h resulted in drastically reduced selenate removal efficiencies (after a delay of 1.5 d), accompanied by the temporary formation of an unknown, soluble, organic selenium species. This study shows that a careful process control is a prerequisite for selenium treatment in UASB bioreactors, as disturbances in the operational conditions induce elevated selenium effluent concentrations by alkylation and colloid formation.  相似文献   

16.
Two acrylic adsorbents with different morphological structures and bearing amidoethylenamine and thiol groups were obtained and used for platinum sorption from chloride solution by the batch method. Physico-chemical parameters that influence adsorption such as initial Pt(IV) concentration, stirring time, pH, and adsorbent amount were investigated. The thermodynamic parameters of Pt(IV) sorption on the synthesized adsorbent were also evaluated based on Langmuir and Freundlich isotherms. Thermodynamic parameters estimated from Langmuir constants indicated that the adsorption is spontaneous, exothermic and there is a disordered state at the molecular level. The models used to analyze the sorption rate led to the conclusion that the most important step in the sorption of Pt(IV) could be both particle diffusion and chemical reaction of [PtCl6] with amine functional groups. Thus, both the ion exchange and complex formation mechanisms can occur via nitrogen atoms in the recovery of Pt(IV) on the studied adsorbent.  相似文献   

17.
Batch sorption and column breakthrough studies were conducted to investigate the potential of layered double hydroxides (LDHs) to remove bacteriophage MS2 from contaminated waters. All four of the LDHs evaluated in this study had very high retention capacities for MS2. Sorption results showed that MS2 could be completely removed from 5.2 x 10(2) plaque-forming units (pfu)/mL solution by Mg-Al LDH 2 (i.e., 2:1 Mg to Al ratio LDH), with the highest sorption capacity observed in this study of 1.51 x 10(10) pfu/g. Attachment of MS2 to LDHs was a rapid process and reached quasi-equilibrium after a 1-h reaction time. Within the pH range studied (pH 4-9), Mg-Al LDH 2 showed high sorption potential for MS2 at all pH values but sorption decreased slightly with increasing solution pH. Background solution anions influenced virus sorption, with SO4(2-) and HPO4(2-) decreasing sorption significantly whereas the presence of NO3- had little effect on the attachment of MS2 to Mg-Al LDH 2. The addition of another virus (phiX174) only caused a slight decrease in the retention of MS2 by Mg-Al LDH 2, suggesting that there was insignificant competitive sorption between MS2 and phiX174 on LDH surfaces. Results from column experiments indicate that there was no MS2 breakthrough from columns packed with Mg-Al LDH 2-coated sand, suggesting complete MS2 retention at the virus concentration tested. The high mass recovery by beef extract solution revealed that the removal of viruses by the LDH was due to sorption of MS2 to LDH surfaces, rather than inactivation.  相似文献   

18.
Batch sorption experiments using a starch-based sorbent were carried out for the removal of heavy metals present in industrial water discharges. The influence of contact time, mass of sorbent and pollutant load was investigated. Pollutant removal was dependent on the mass of sorbent and contact time, but independent of the contaminant load. The process was uniform, rapid and efficient. Sorption reached equilibrium in 60 min irrespective of the metal considered (e.g. Zn, Pb, Cu, Ni, Fe and Cd), reducing concentrations below those permitted by law. The material also removed residual turbidity and led to a significant decrease in the residual chemical oxygen demand (COD) present in the industrial water discharge. The germination success of lettuce (Lactuca sativa) was used as a laboratory indicator of phytotoxicity. The results show that the sorption using a starch-based sorbent as non-conventional material, is a viable alternative for treating industrial wastewaters.  相似文献   

19.
Removal of selenium (Se) from agricultural drainage water is important in protecting wetland wildlife. Three flow-through bioreactor channel systems (BCSs), each with three channels filled with rice (Oryza sativa L.) straw, were set in the laboratory to determine removal of selenate [Se(VI)] (1020 microg L(-1)) from drainage water with a salinity of 10.4 dS m(-1), a pH of 8.1, and a nitrate (NO3-) range of 0 to 100 mg L(-1). Results showed that the rice straw effectively reduced Se(VI) during 122 to 165 d of the experiments. Calculation of Se mass in the three BCSs showed that 89.5 to 91.9% of the input Se(VI) was reduced to red elemental Se [Se(0)], where 96.6 to 98.2% was trapped in the BCSs. Losses of each gram of rice straw were almost equal to the removal of 1.66 mg of Se from the drainage water as a form of red Se(0), indicating that rice straw is a very effective organic source for removing Se(VI) from drainage water.  相似文献   

20.
The sorption and desorption of cadmium and zinc on zeolite 4A, zeolite 13X and bentonite has been studied using batch sorption studies. Parameters such as equilibrium time, effect of pH and sorbent dose were studied. The sorbents exhibited good sorption potential for cadmium and zinc with a peak value at pH 6.0 and 6.5, respectively. The sorption followed the Freundlich sorption model. More than 70% sorption occurred within 20 min and equilibrium was attained at around 90 min for the three sorbents. The metals sorption by zeolite 4A was higher than that by zeolite 13X and bentonite. The desorption studies were carried out using NaCl solution and the effect of NaCl concentration on desorption was also studied. Maximum desorption of 76% for cadmium and 80% for zinc occurred with 10% NaCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号