首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
根据水泥工业大气污染物排放的数学模型;测算2005年-2011年中国水泥工业二氧化碳(CO2)、氮氧化物(NO2)、二氧化硫(SO2)、颗粒物(PM)和氟化物(F)等污染物排放量,分析节能减排的效果并提出解决问题的对策。结果表明:水泥工业CO2排放量逐年增长,并且与水泥产量和单位产品综合能耗呈线性关系;原料煅烧和能源利用过程CO2排放量分别占56%和44%;单位水泥产品CO2排放强度由0.68 t·t-1下降到0.58 t·t-1,相当于每年节约标准煤682×104t、减少CO2排放共计1.03×108t。NO2排放量分别是SO2、PM、F的4、7、160倍。发展新型干法技术、建设烟气脱硝装置、协同处置固体废物是水泥工业未来节能减排的发展方向。  相似文献   

2.
中国水泥工业CO2排放现状及减排对策   总被引:2,自引:0,他引:2  
水泥工业是中国制造业中温室气体CO2的主要排放源,因此,根据水泥生产的基本原理和工艺特点,建立了CO2排放的数学模型并确定排放强度,计算了2001—2010年中国水泥工业CO2的排放量,分析了影响CO2排放量的主要因素及其发展趋势,并提出水泥工业CO2减排对策.结果表明,中国水泥工业CO2排放总量逐年增长,与水泥产量和单位产品原料、燃料消耗定额呈线性关系;在CO2排放总量中,原料煅烧和燃料燃烧阶段的排放量分别占49%和51%;"十一五"期间单位水泥产品CO2排放强度由0.69t.t-1下降到0.65t.t-1.万元GDPCO2排放量呈下降趋势,2008年达到最低值为0.3054t,平均每年万元GDPCO2排放量下降10.69%,说明水泥工业10年间实施节能降耗、资源循环利用、提高经济效益等措施对于减少CO2排放具有明显效果.  相似文献   

3.
利用2007年能源环境经济投入产出模型,分析重点行业生产过程、二氧化碳(CO2)排放和重点常规污染物的产生与排放的完全影响,在此基础上研究水泥行业主要常规污染物和CO2之间的协同减排方式,定量计算主要常规污染物和CO2之间的减排协同度。通过对各种减排方式进行定量分析可以看出,提高水泥质量、提高水泥散装率、技术改进都是常规污染物和CO2的减排量和协同度相对较高的方式,采用替代燃料可以大量协同减排二氧化硫(SO2)和CO2,采用替代原料可以大量协同减排工业固体废物和CO2,通过对各种减排方式进行定量对比分析,对我国水泥行业主要常规污染物和CO2减排政策提出相关建议。  相似文献   

4.
工业是城市能源活动CO2排放的最重要部门,核算工业部门CO2排放以及合理的减排情景分析是城市碳减排的关键内容。该研究以区域终端消费电热力产品CO2排放系数为基础,建立终端能源消费CO2排放核算方法,比较了终端法和直接法核算2007年厦门工业能源消费CO2排放量、行业分布和排放强度的差异,分析了影响工业CO2排放的主要因子和各情景下工业CO2减排潜力。研究结果表明:2007年厦门市工业终端能源消费CO2排放量为7 940 kt CO2,排放强度为1.182 t CO2/万元GDP,排放强度较高的行业依次为化学纤维制造业、非金属矿采选业、化学原料及化学制品制造业、电力和热力的生产和供应业等行业,影响排放强度的主要因子为行业能源消费强度、电力能源结构、工业能源结构和工业行业结构;采用终端法核算的厦门工业能源消费CO2排放行业结构与直接法核算结果有明显的差异。通过建立的CO2减排潜力估算方法,预测在规划情景和理想情景下,2015年厦门市工业CO2排放强度将分别下降30.4%和41%,在工业增加值为1 500亿元情景下,CO2排放总量分别为12 358和10 475.9 kt CO2,比2007年增长55.4%和31.7%。  相似文献   

5.
中国水泥工业CO2产生机理及减排途径研究   总被引:3,自引:2,他引:1  
根据水泥生产的基本原理和工艺特点,推导出煤燃烧和石灰质原料煅烧时CO2排放因子分别为2.38 t·t-1和0.527 t·t-1;采用水泥工业CO2排放数学模型计算2001-2008年中国水泥工业CO2排放量,并分析了不同的生产技术水平和产品品种结构对CO2,排放量的影响.结果表明:中国水泥工业CO2排放量与单位产品的...  相似文献   

6.
中国CO2排放量与工业废气排放量之间具有很高的相关性,废气量减排是实现CO2减排的重要手段和切入点,有必要开展深入研究。根据能量平衡的原理,建立了余热利用、余压利用和含热值气体再利用等碳减排计算方法,简述了现有的钢铁烧结机烟气循环技术、水泥窑协同处理生活垃圾和市政污泥技术以及电解铝烟气阶梯利用于火电厂技术,并对以上主要行业废气再利用的碳减排量进行了计算和分析。结果表明,主要工业行业的废气再利用技术可以减少废气量排放,进而减少CO2排放,对于实现中国CO2减排目标的贡献接近1/4。废气再利用技术对减少CO2排放具有重要作用,应作为实现2020年减排目标的重要技术途径,大力推广发展。  相似文献   

7.
为了评估山东省水泥行业的CO2减排潜力,利用长期能源替代规划系统软件建立了LEAP-Shandong Cement模型,对山东省水泥行业的CO2排放量及相应的减排潜力进行了模拟评估.同时,在模型中运用情景分析方法,研究了基准情景、政策情景和技术情景下山东水泥行业2007~2020年的能源需求和CO2排放量以及相应的节能减排潜力.结果表明,到2020年,相对于基准情景,政策情景和技术情景下的减排潜力分别为8.5%和14.4%.因此,山东省水泥行业具有一定的减排潜力.实现减排主要依靠窑型的替代和相应技术的进步,其中,余热发电技术改进为近期的重点减排技术.总体而言,水泥行业减排兼具显著的环境、经济和社会效益.  相似文献   

8.
中国CO2排放总量控制区域分解方案研究   总被引:9,自引:4,他引:5  
探讨CO2排放总量区域分解的方法.借鉴国际上针对国家之间的分解原则和方法,提出中国省际之间的分解的公平性、可行性和效率性三大原则;确定了排放水平、经济水平、工业能源利用水平、非化石能源利用水平4大影响因子;提出了人均排放量、人均GDP、工业增加值能耗、工业增加值能耗变化趋势、非化石能源占一次能源消费比例5个指标,构建了...  相似文献   

9.
李晓飞  陶茜 《环境科技》2010,23(3):72-75
在全球气候变暖的背景下,碳捕获和存储技术做为一种将工业和能源排放源产生的CO2进行收集、运输并安全存储到某处使其长期与大气隔离的过程,以此减少CO2排放的新技术,备受全球关注.针对碳捕获和储存技术的CO2储存地质条件进行分析,结果表明,华北平原东部是CO2排放源与地理匹配性最好的地区,应该是我国首先开辰CCS技术尝试的地区.  相似文献   

10.
水泥工业是温室气体二氧化碳(CO2)的主要排放源,利用碳排放数学模型计算2001-2010年我国水泥工业碳的排放量,分析碳排放量的变化特点和发展趋势。结果表明:水泥工业碳排放总量逐年增长,与水泥产量和排放强度呈线性关系。"十一五"期间单位产品碳排放强度由0.69 t/t下降到0.65 t/t。万元GDP碳排放量2008年达到最低值为0.295 1 t,平均每年万元GDP碳排放量下降2.85%。水泥工业十年间实施节能降耗、资源循环利用、提高经济效益等措施,对于减少碳排放具有明显效果。  相似文献   

11.
基于国内水泥生产现状的碳排放因子测算   总被引:3,自引:0,他引:3       下载免费PDF全文
魏军晓  耿元波  沈镭  岑况  母悦 《中国环境科学》2014,34(11):2970-2975
水泥生产过程中碳排放因子的测算是计算水泥碳排放量的基础,为了准确测算我国水泥行业熟料煅烧阶段碳酸盐矿物分解释放CO2的碳排放因子,就需要对水泥生产线上相关样品做成分测定和综合分析.通过对国内近百条代表性较强的水泥生产线上的生料、熟料、水泥、石灰石、燃煤等样品进行钙、镁、烧失量、碳酸盐等化学成分的定量分析,并考虑新型干法窑和立窑两种生产工艺类型的差别,分析测算了基于国内水泥生产的工艺碳排放因子.结果表明:生料碳酸盐法测算碳排放因子的结果较熟料法的结果低约10kgCO2/tcl;不同窑型的碳排放因子存在明显差异,新型干法窑的碳排放因子多集中在500~520kgCO2/tcl,立窑碳排放因子多集中在480~500kgCO2/tcl;多数熟料含有少量碳酸盐.生料碳酸盐法不涉及燃煤灰分的化学成分,可以规避燃煤灰分成分的影响,测算碳排放因子采用生料碳酸盐法较准确,并且应基于不同窑型,同时考虑碳酸盐分解率问题.  相似文献   

12.
水泥工业作为工业生态系统的汇,能够多样化地利用其他行业的副产物,这种典型的产业共生模式可以通过减少资源和能源的消耗带来显著的CO2减排效果.由于产业共生在水泥行业具有一定的普遍性及巨大的CO2减排潜力,所以对水泥工业产业共生现状的了解与分析就显得尤为重要;而通过对产业共生现状的全面了解,才能对现有水泥行业产业共生的程度进行分析,并以此为参照,对未来不同政策与情景下的CO2减排潜力进行量化与评估.为实现对产业共生实际情况的模拟,以水泥-电力行业的产业共生为例,采用最优化的方法,提出了一套基于一般统计数据来模拟产业共生实际情况的系统方法,将技术、经济与政策3类不同的决策变量影响纳入模型,以模拟出最接近真实情景的产业共生情况.为验证模型的有效性,对新乡市水泥-电力行业实际的产业共生情况进行分析.结果表明:新乡市水泥-电力行业间存在普遍的产业共生现象,实地调查中有77.8%(21家)的水泥制造企业利用粉煤灰作为水泥制造的原材料.将一般统计数据与实地调查数据对比发现,一般统计数据能较好地反映企业实际物质投入产出情况;利用一般统计数据,模型对新乡市产业共生网络结构模拟的准确率高达92.6%,显示该模型能较为有效地对产业共生的实际情况进行模拟.   相似文献   

13.
我国水泥工业大气污染物排放量估算   总被引:10,自引:2,他引:8  
水泥工业是粉尘,SO2和NOx等多种大气污染物的重要排放源.根据各地水泥工业的工艺现状、活动水平、除尘器的除尘效率和污染物排放因子,估算了1995—2005年我国水泥工业生产过程中排放的粉尘,PM10,PM2.5,SO2,NOx,氟化物和CO等的排放量,并给出了2005年分省区、分工艺的排放清单.结果表明,污染物排放量与水泥活动水平呈正相关.1995年以来,随着水泥产量增加,污染物排放量增长迅速,2005年我国水泥工业排放排放粉尘520.69×104 t,PM10437.24×104 t,PM2.5301.06×104 t,SO2 86.09×104 t,NOx286.67×104 t,氟化物57.72×104t,CO1 987.97×104 t;山东、浙江、江苏、河北和广东等水泥生产大省污染物排放量较大,污染物排放总量占全国总排放量的46.6%,新型干法的推广应用有助于大气污染物的减排.   相似文献   

14.
中国钢铁行业技术减排的协同效益分析   总被引:2,自引:0,他引:2  
选取钢铁行业的22项节能减排措施,评估和比较了各项措施的减排潜力、减排成本和协同效益,力图得到钢铁行业减排的最优路径.研究结果表明:基于2012年的钢铁产量和生产结构,我国钢铁行业的技术减排潜力约为146.8Mt CO2、314.2kt SO2、265.7kt NOx和161.5kt PM10,分别占钢铁行业2012年总排放量的9.7%、13.1%、27.3%和8.9%;如果考虑节能收益,有10项措施具有经济可行性,累积减排潜力约为98.0Mt CO2、210.0kt SO2、211.0kt NOx和89.0kt PM10;如果综合考虑节能收益和协同效益,有14项措施具有经济可行性,累计减排潜力约为123.4Mt CO2、264.0kt SO2、234.0kt NOx和130.0kt PM10.钢铁行业开展技术减排时,需要综合考虑减排成本、节能收益和协同效益,参考减排成本选择最成本有效的措施.  相似文献   

15.
施用高效氮肥对农田N2O的减排效果及经济效益分析   总被引:5,自引:0,他引:5       下载免费PDF全文
收集高效氮肥N2O排放资料,利用整合分析法分析高效氮肥对N2O的减排效果.稳定性氮肥排放的N2O是普通肥料的0.66倍,减排效果显著;包膜缓释氮肥N2O排放量为普通氮肥的0.95倍,无显著减排效果.若将全国范围的普通氮肥替换为稳定性氮肥、且用N量不变时,稳定性氮肥在中国农田的N2O减排潜力均值为1.03×108 kgN/a,碳排放交易收入为16.86亿元/a;根据现有市场上稳定性氮肥的价格,每亩地每季补贴4.9元,碳排放交易收入和稳定性氮肥成本增加量相抵.由于稳定性氮肥能有效提高N利用率,保证农作物吸N总量不变时减少用N量,稳定性肥料N利用率提高8个百分点时,N2O减排经济效益(即碳排放交易收入-稳定性氮肥成本增加量)为94亿元/a.  相似文献   

16.
水泥行业既是中国的支柱产业,也是重污染行业,其中机立窑水泥产量达到60%以上。机立窑生产过程中,各类生产设备排气口数量多、监测条件差,监测数据不具备代表性,难以用于排污量的核定。通过结合水泥生产相关环节的生产特点,分析生产各流程的产污和排污情况,利用实际监测数据和物料衡算方法,归纳出机立窑水泥生产的废气类污染物排放量,并得出机立窑水泥生产各环节的相关排污系数。  相似文献   

17.
天津市大气污染源排放清单的建立   总被引:40,自引:15,他引:25  
通过调研天津市工、农业生产和居民生活的统计资料,研究分析文献报道的各种污染源排放因子,计算出天津市各行业、各区县NOx、SO2、NMVOC、CO、NH3、PM10、PM2.5等污染物的排放量,发展了天津市2003年排放源清单.结果显示,天津市2003年各类污染物质的排放量NOx为1.77×105t,SO2为2.59 ×105t,NMVOC为2.24×105t,CO为1.33×106t,NH3为7.40×104t,PM10为2.52×105t,PM2.5为1.10×105t.从排放源的行业分布来看,燃煤源、汽车移动源、秸秆燃烧源是天津市大气污染物的重要排放源,燃煤源对各污染物的贡献分别为NOx46%,SO284%,NMVOC 1%,CO 58%,PM1018%,PM2.5 24%.火电、水泥、钢铁、炼焦、原油加工等行业依然是重要的工业污染排放源,火电对SO2的贡献为13%,钢铁对SO2的贡献为24%,对CO的贡献为30%.2003年天津市区对NO,、S02、NMVOC、CO等污染物的贡献均高于其它区县,对PM10、PM2.5的贡献也很高;塘沽区对NOx、SO2、NMVOC、CO等污染物的贡献很大,蓟县、武清区、宝坻区对NH3、PM10、PM2.5的贡献很大.  相似文献   

18.
上海市能源CO_2排放及节能减排的减碳效果分析   总被引:2,自引:2,他引:0  
以 2005 年为基准,采用 IPCC 清单指南推荐的方法测算了上海市能源活动产生的 CO2 排放清单。并采用情景分析方法,预测了高碳情景和低碳情景下上海市能源需求及相应的二氧化碳排放趋势,探讨了节能减排等低碳政策所产生的碳削减的潜力。研究表明,2005 年上海市能源活动所排放的 CO2 总量为 1.72 亿 t,其中,能源加工转换产生的 CO2 排放量为 7740 万 t,占排放总量的 44%;工业次之,占 30%;交通运输的排放比例为 16%。煤炭和石油的消费是导致 CO2 排放的主要原因,2005 年煤炭所带来的 CO2 排放量为1.10 亿 t,油品所产生的 CO2 排放量为 0.58 亿 t,分别占到能源活动 CO2 排放总量的 64.0%和 33.7%。 2005 年上海市人均 CO2 排放量为9.68 t/人,是世界平均水平的 2.4 倍,是中国平均水平的 3.8 倍。研究表明,在低碳政策下,上海能源需求将有所控制,到 2020 年全市能源需求总量为 1.6 亿 t 标煤, 比高碳情景节约 1.4 亿 t 标煤。节能减排政策还将使得全市能源活动 CO2 排放比高碳情景显著下降,到2020 年全市 CO2 排放量为 3.26 亿 t,比高碳情景减少 3.1 亿 t,低碳政策所产生的碳减排效益十分明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号