首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
厌氧流化床废水处理技术研究及应用进展   总被引:10,自引:0,他引:10  
本文讨论了厌氧流化床反应器(AFBR)从70年代中期以来的发展,介绍了AFBR的部分工业应用实例。着重讨论了AFBR的若干理论及技术问题,其中包括单相和两相AFBR反应器,反应器的启动;微生物固定化载体的选择,冲击负荷对工艺稳定性的影响,反应器中微生物固定化方式等问题,对AFBR今后的研究重点提出了作者的一些看法。  相似文献   

3.
厌氧装置的设计及发展   总被引:1,自引:0,他引:1  
李彦春 《环境科技》1989,2(4):41-44,40
一、前言厌氧发酵产生甲烷是一个古老的反应。无论在沼泽、稻田、河底淤泥中,或是在牛、猪及人体等生物体内,都存在着微生物作用释放气体的过程。英国在1881年首次把厌氧消化技术应用于废水处理领域,在那里建立了处理城市污泥的厌氧消化池。1906年,有人发现经厌氧作用也可直接把CO_2及H_2合成甲烷。随着先进技术设备的出现和使用,厌氧微生物的研究得到深入,并取得了一定的成就。最近几年里,人们对厌氧技术,尤其是对  相似文献   

4.
厌氧工艺的发展和新型厌氧反应器   总被引:77,自引:1,他引:76  
王凯军 《环境科学》1998,19(1):94-96
回顾了厌氧技术的发展,着重介绍厌氧反应器的发展趋势。对第三代的典型反应器,如颗粒污泥膨胀床反应器,厌氧内循环反应器和厌氧升流式流化床原理和应用进行了详细的介绍,并且对笔者在城市污水厌氧处理方面的实践也进行了介绍。  相似文献   

5.
本文系统综述了污水厌氧生物处理技术现状,对各技术的优缺点进行了比较,指出了应用前景。  相似文献   

6.
探讨了厌氧生物滤池在城市污水处理中的应用,厌氧生物滤池处理城市生活污水的实验研究结果表明,其去除掉悬浮有机污染物后,有机污染处理效率可达到50%以上,进一步处理效果与填料的比表面积和结构、温度和停留时间等因素有关.  相似文献   

7.
杨宝林 《上海环境科学》1990,9(11):47-48,38
一、概述厌氧消化早就为人们所知,并用来处理污泥。化粪池、双层沉淀池和消化池相继在实践中应用。不过,由于理论认识不十分清楚,运行中存在的一些问题未能解决,所以,长时期以来发展比较缓慢。60、70年代以来,对厌氧消化的研究取得了突破性进展,搞清了理论上的许多问题。随着能源危机的出现,人们对它的研究产生了很大兴趣,用来处理工业废水和城市污水,成了热门课题。  相似文献   

8.
陆菁 《环境工程》2002,20(5):15-17
将市场污水处理厂消化池中的厌氧污泥投入处理化工高浓度废水的厌氧反应器中进行厌氧菌的驯化工作,重点研究了在此过程中进、出水CODCr、pH、VFA(挥发性有机酸)、污泥的变化情况及相互联系。  相似文献   

9.
硫酸盐还原——甲烷化两相厌氧处理工艺中的回流比研究   总被引:4,自引:0,他引:4  
康宁  秦祥田 《上海环境科学》1997,16(3):38-40,45
以硫酸盐还原—产甲烷两相厌氧新型工艺处理含高浓度硫酸盐有机废水,气提塔出水的回流比的操作选择十分关键。根据、电离平衡理论及最佳工艺条件要求(液相中的C_L(H_2S)≥208mg/L,c(S~(2-))≤500mg/L)推导出估算回流比的模型为[Bc_0(SO_4~(2-))/1500-1]/η≤R≤[Bc_0(SO_4~(2-))(1.49×10~(pH-7) 1)~(-1)/588-1]/η。以该模型为依据处理SO_4~(2-)浓度为10000mg/L合成废水时,得到总COD去除率和总硫酸盐还原率分别为92.6%和97.6%。  相似文献   

10.
用厌氧折流板反应器处理碱法草浆黑液   总被引:16,自引:0,他引:16  
在不添加氮、磷营养盐和不调节进水PH值条件下,用厌氧折流板反应器(ABR)处理碱法草浆黑液。结果表明,在HRT=10.6d、Nv=5.3kgCODcr/m^3.d、PH=13.6和COD.r=56100mg/L时,COD.r去除率为42%,达到厌氧处理法的最大去除率的84%。  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

17.
Single and joint effects of pesticides and mercury on soil urease   总被引:6,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

18.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

19.
A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD DDE)/DDT in soils under three land usages were: paddy field > tree land > fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD DDE)/DDT >1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.  相似文献   

20.
The contribution of aliphatic-rich plant biopolymer to sorption of hydrophobic organic compounds is significantly important because of their preservation and accumulation in the soil environment,but sorption mechanism is still not fully understood.In this study, sorption of 1-naphthol by plant cuticular fractions was examined to better understand the contributions of respective fraction.Toward this end,cuticular materials were isolated from the fruits of tomato by chemical method.The tomato cuticle sheet consisted of waxes (6.5 wt%),cuticular monomer (69.5 wt%),and polysaccharide (24.0 wt%).Isotherms of l-naphthol to the cuticular fractions were nonlinear (N value (0.82-0.90)) at the whole tested concentration ranges.The KodKow ratios for bulk cuticle (TC1),dewaxed cuticle (TC2),cutin (TC4),and desugared cuticle (TC5) were larger than unity,suggested that tomato bulk cuticle and cutin are much powerful solption medium.Sorption capability of cutin (TC4) was 2.4 times higher than the nonsaponifiable fraction (TC3).The 1-naphthol interactions with tomato cuticular materials were governed by both hydrophobic-type interactions and polar (H-bonding) interactions. Removal of the wax and polysaccharide materials from the bulk tomato cuticle caused a significant increase in the sorption ability of the cuticular material.There was a linear negative trend between K_(oc) values and the amount of polysaccharides or fraction's polarities ((N O)/C);while a linear positive relationship between K_(oc) values and the content of cutin monomer (linear R~2=0.993) was observed for present in the cuticular fractions.Predominant sorbent of the hydrophobic organic compounds (HOCs) in the plant cuticular fraction was the cutin monomer,contributing to 91.7% of the total sorption of tomato bulk cuticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号