首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
近年来中国经历了数次大范围雾霾天气,北京等多个城市更是遭遇连续雾霾。造成雾霾天气的主要污染物PM_(2.5)又称细颗粒物。为了进一步治理北京雾霾,为制定政策提供依据,须了解北京地区PM_(2.5)的来源。本文基于后向轨迹模式并结合PM2.5浓度计算了2015年9月1日0:00至2016年8月31日23:00以北京为起始点,向后推算48小时的轨迹,并结合轨迹聚类分析法、潜在源贡献因子法(PSCF)、浓度权重轨迹分析法(CWT)等,探讨北京地区PM_(2.5)的来源。结果表明:模拟的后向轨迹经过聚类分析可分为6类,其中来自内蒙古西部的轨迹最多,来自西北、北西北方向的轨迹次之,来自西西北方向且在京津冀地区停留一段时间的轨迹占比最小,来自河北、山东、河南的交接地区及河北的沿海地区的轨迹占比也较小。其中来自内蒙古西部地区及河北、山东、河南交界地区的两类轨迹对北京的空气质量有较大的影响,是北京PM_(2.5)污染的主要潜在源区;来自北西北方向及河北的沿海地区两类轨迹的气团最为清洁,为北京带来良好的天气;来自西北及西西北方向的部分轨迹对应的PM_(2.5)浓度严重超标,说明来自此方向的气团对北京的空气质量也有一定的影响。  相似文献   

2.
近年来中国经历了数次大范围雾霾天气,北京等多个城市更是遭遇连续雾霾。造成雾霾天气的主要污染物PM2.5又称细颗粒物。为了进一步治理北京雾霾,为制定政策提供依据,须了解北京地区PM2.5的来源。本文基于后向轨迹模式并结合PM2.5浓度计算了2015年9月1日0:00至2016年8月31日23:00以北京为起始点,向后推算48小时的轨迹,并结合轨迹聚类分析法、潜在源贡献因子法(PSCF)、浓度权重轨迹分析法(CWT)等,探讨北京地区PM2.5的来源。结果表明:模拟的后向轨迹经过聚类分析可分为6类,其中来自内蒙古西部的轨迹最多,来自西北、北西北方向的轨迹次之,来自西西北方向且在京津冀地区停留一段时间的轨迹占比最小,来自河北、山东、河南的交接地区及河北的沿海地区的轨迹占比也较小。其中来自内蒙古西部地区及河北、山东、河南交界地区的两类轨迹对北京的空气质量有较大的影响,是北京PM2.5污染的主要潜在源区;来自北西北方向及河北的沿海地区两类轨迹的气团最为清洁,为北京带来良好的天气;来自西北及西西北方向的部分轨迹对应的PM2.5浓度严重超标,说明来自此方向的气团对北京的空气质量也有一定的影响。  相似文献   

3.
利用后向轨迹模式计算2014年1月1日~2014年12月31日以攀枝花市为起始点的后向轨迹,并结合攀枝花市PM_(2.5)的实测浓度数据,通过聚类分析法、潜在源贡献因子法(PSCF)和浓度权重轨迹分析法(CWT)研究不同来源区域对攀枝花市PM_(2.5)浓度的贡献影响。结果表明:攀枝花市的西南区域与云南省的交界地区最有可能是攀枝花市PM_(2.5)的贡献源区。攀枝花市西南区域本地排放的PM_(2.5)污染物及其前体物和来自攀枝花市西南方向的气团对攀枝花市的PM_(2.5)浓度影响最大。  相似文献   

4.
利用巴中市城区一个自然年(2016年3月1日~2017年2月28日)的空气质量数据,分析了巴中市城区PM_(2.5)的污染特征和时空变化规律。结果表明,PM_(2.5)日均浓度对数值接近正态分布特征,PM_(2.5)与其他主要大气污染物都具有显著的相关关系。CO、NO_2是主要的相关因素,与PM_(2.5)的相关系数都高达0.7以上。PM_(2.5)浓度表现为冬季秋季春季夏季,这与首要污染物是PM_(2.5)的天数占比以及PM_(2.5)与PM_(10)相关系数的季节变化一致,反映了PM_(2.5)呈现出以冬季污染最重,春、秋季污染中等,夏季污染最小的季节特征。PM_(2.5)与PM10的浓度比值表现为冬季秋季夏季春季。各个站点的PM_(2.5)变化趋势一致,相互之间浓度差异小且比较均衡,巴中中学站点的PM_(2.5)浓度无论在任何季节都高于其他站点,苏山坪站点在冬季的PM_(2.5)浓度明显低于其他站点,表明PM_(2.5)污染具有明显的区域性特征,与人类活动强度相关的局地污染对PM_(2.5)污染具有一定影响。  相似文献   

5.
利用2016年1月至12月潍坊城区典型区域的PM_(10)、PM_(2.5)浓度的连续观测数据,研究了PM_(10)、PM_(2.5)浓度的变化特征及其与气象因素的关系。结果表明,潍坊城区颗粒物污染较为严重,PM_(10)超标率为7.59%、PM_(2.5)超标率为33.61%。PM_(10)和PM_(2.5)质量浓度均存在明显的季节变化和月变化规律,表现为夏季月份较低,而冬季月份较高。PM_(2.5)/PM_(10)比值的平均值为0.526,该比值也呈现一定季节变化,冬夏两季较高,春秋两季较低。PM_(10)和PM_(2.5)与气温均呈现一定的负相关性,PM_(10)还与湿度呈现负相关关系。  相似文献   

6.
中国道路交通源大气污染的健康影响评估   总被引:3,自引:3,他引:0       下载免费PDF全文
随着经济的发展,我国机动化进程加快,机动车尾气排放已经成为城市空气污染的重要来源。对特定污染源排放引起的大气污染健康负担进行评估可以为环境空气质量管理提供科学依据。本研究遵循全球疾病负担(GBD)研究框架,应用环境空气质量模型,基于大气污染源排放清单、卫星反演PM_(2.5)浓度、全国PM_(2.5)导致的过早死亡等数据,对我国交通源所致的大气污染及健康负担进行评估。结果显示,2010年,我国由于交通源排放贡献的PM_(2.5)的年平均浓度为1.49μg/m~3,估计导致的过早死亡总数约11.69万人。交通源排放所致的健康负担主要集中在京津冀、长三角、珠三角以及中西部等经济发达和人口密集的地区。我国一方面需要实施更为严格的减排措施,持续控制交通源的排放量;另一方面,除了京津冀等发达区域,也需要加强对人口密集区域(如河南、山东等地)的机动车污染控制,以减少交通大气污染对人体健康的影响。  相似文献   

7.
以新疆"乌—昌—石"重点城市之一的昌吉市作为研究对象,收集2015~2020年昌吉市空气质量自动监测站点的PM_(2.5)浓度数据,分析昌吉市PM_(2.5)浓度的年变化、季节变化、月、日以及小时变化特征及其变化规律。结果表明:近6年来昌吉市PM_(2.5)浓度均超过二级标准限值浓度,且PM_(2.5)平均浓度整体呈上升趋势;不同季节PM_(2.5)浓度呈春夏季低、秋冬季高的特点;受冬季气象条件和采暖期影响,PM_(2.5)浓度在11月至次年3月相对较高,4~10月相对较低;PM_(2.5) 24小时浓度在不同月份呈现不同的日变化规律。PM_(2.5)浓度时空分布与气象条件、采暖季、汽车尾气、工业排放等因素有关,且是影响空气质量等级和优良天数的主要因素。研究结果可为昌吉市PM_(2.5)污染防治提供参考。  相似文献   

8.
以淮河生态经济带5个省份为研究对象,通过主成分-相关性-主成分的方式构建评价指标体系,运用熵值法计算指标权重,采用TOPSIS法对淮河生态经济带的自然生态环境质量进行评价分析,以最终的相对贴近度作为评价依据。结果显示,安徽、江苏、河南、湖北、山东五省的相对贴近度分别为0.194,0.749,0.145,0.291,0.139,自然生态环境质量排名由高到低分别为江苏、湖北、安徽、河南、山东。其中,江苏省各指标较为均衡,其余4省均存在一定薄弱环节。  相似文献   

9.
对克拉玛依市2014-2015年PM_(2.5)质量浓度进行整理统计,通过Arc GIS空间插值和EXCEL数理统计分析得出PM_(2.5)的质量浓度变化特征。结果表明,PM_(2.5)各小时浓度均低于国家二级标准,整体空气质量为良;PM_(2.5)季节浓度呈现冬季高,春夏低的规律,其中2月份浓度最高,为63.7μg/m3,4月份最低为23.6μg/m3;各监测站PM_(2.5)浓度受盛行风影响自西北向东南方向递增,依次为南林小区、长征新村、白碱滩区、独山子区、乌尔禾区商贸区;PM_(2.5)与PM10全年平均比值为0.53,整体空气污染较重。此外,PM_(2.5)与NO_2和SO_2均呈正相关,与O_3呈负相关性,说明汽车尾气和化石燃料排放是PM_(2.5)的主要来源。  相似文献   

10.
在川南地区的宜宾市开展了大气细颗粒物(PM_(2.5))浓度及组分的季节观测分析,结果表明,采样点的PM_(2.5)年均浓度(51. 7μg/m~3)超过二级浓度限值47. 71%,同时全年有20. 94%的天数PM_(2.5)日均浓度超过二级浓度限值;冬季浓度最高、达81. 1μg/m~3,明显高于其他季节,夏季浓度最低。PM_(2.5)中水溶性无机离子浓度总和冬(42. 42μg/m~3)秋(32. 73μg/m~3)春(24. 57μg/m~3)夏(17. 0μg/m~3),但占PM_(2.5)浓度的百分比的季节规律则刚好与之相反,为夏(54. 19%)春(48. 1%)秋(46. 91%)冬(45. 45%);其中,SO_4~(2-)、NO_3~-和NH_4~+是PM_(2.5)中最主要的3种二次无机离子组分,三者浓度之和占PM_(2.5)的37. 47%。PM_(2.5)中SO_4~(2-)、NO_3~-和NH_4~+的浓度均为冬季高于其他季节,但NO_3~-/PM_(2.5)冬(12. 22%)秋(11. 53%)春(8. 14%)夏(5. 43%)、NH_4~+/PM_(2.5)秋(9. 85%)夏(9. 15%)春(8. 52%)冬(7. 61%)、SO_4~(2-)/PM_(2.5)夏(26. 3%)春(20. 75%)秋(15. 82%)冬(14. 61%)。四个季节SOR值均大于NOR值,SOR值季节变化差异不大,但NOR值冬季明显高于其他季节。PM_(2.5)中的SO_4~(2-)、NO_3~-和NH_4~+冬季以(NH_4)_2SO_4、NH_4NO_3的形式共存于气溶胶体系中,而夏季则主要以(NH_4)_2SO_4和NH_4HSO_4存在。  相似文献   

11.
本研究分析PM_(2.5)中有机碳和元素碳的质量浓度变化特征,对昌吉市典型区域昌吉州环保局2016-01月至2017-01月采集的大气细颗粒物(PM_(2.5))样品,利用美国(Sunset Lab Inc)大气气溶胶元素碳与有机碳仪分析了其中的有机碳(OC)和元素碳(EC)浓度水平、污染特征及其可能来源,以期为深入了解昌吉市颗粒物污染现状,制定大气污染防治对策提供依据。结果表明:昌吉市OC和EC的质量浓度范围分别为0.13~46.71μg/m3和0.05~8.25μg/m~3,5月份质量浓度最小,EC的质量浓度月分布无明显变化,OC和EC最大浓度均出现在2月。OC的质量浓度季节变化特征呈现冬季秋季夏季春季;EC的质量浓度季节变化特征呈现冬季秋季夏季春季。在不同的季节,OC的浓度变化比较明显,EC排放相对稳定。对各季节OC、EC相关性分析中可以看出,昌吉市OC、EC相关性表现为夏季最强,春秋次之,表明昌吉市夏、春、秋OC、EC具有相似来源或大气扩散过程,主要来源于交通源机动车尾气的排放;冬季相关性较低,说明OC和EC来源复杂,冬季进入采暖期,采暖期燃煤燃气增加,排放量增大,排放源结构复杂,大气污染可能受多种源共同影响。  相似文献   

12.
对成都市城区O_3、SO_2、NO_X、CO、PM_(2.5)、PM_(10)、苯和甲苯进行了为期一年的在线观测。结果表明:成都市超标最严重的为NO_X,年平均质量浓度为(100. 9±61. 5)μg/m3,超标天数为119 d。PM_(2.5)、PM_(10)、CO和NO_X的浓度均为冬季最高; O_3春夏季高而冬季低; SO_2浓度冬季相对较高但总体水平较低。春、夏、秋季成都市大气中苯系物的主要来源为机动车,冬季则是机动车源和燃烧源的综合贡献。O_3日变化呈"单峰型"; NO、苯和甲苯都在上午出现峰值; NO_2与PM_(10)、PM_(2.5)均呈现出"双峰双谷"型日变化; CO也为双峰型日变化。各大气污染物浓度没有明显"周末效应",但"长假效应"显著。  相似文献   

13.
利用2015—2018年长沙市连续在线观测得到的环境空气6项污染物质量浓度和同期的气象要素数据,分析空气质量变化特征及其与气象要素的关系。结果表明:长沙市空气质量正逐年好转,且具有明显的季节特征,呈春夏季较好、冬秋季较差的特征;影响长沙市空气质量最主要的首要污染物为PM_(2.5),其次为O_3,且以PM_(2.5)为首要污染物的天数逐年减少,以O_3为首要污染物的天数逐年增加。PM_(2.5)、PM_(10)、NO_2、SO_2、CO浓度的季节变化特征都是夏低冬高,但O_3浓度的季节变化却是夏高冬低。各项污染物浓度与同期5种气象要素的相关性分析结果表明:各项污染物浓度与气压、气温、降水量、风速相关程度较高,其中,O_3与气象要素的相关性与另外5种污染物的相关性完全相反。  相似文献   

14.
2010年夏季采集雅安市2个地点(四教和白马泉)的TSP、PM_(2.5)样品,并利用离子色谱和原子吸收等方法测定了颗粒物中主要水溶性离子的浓度。结果显示,四教TSP与PM_(2.5)的日均浓度分别为108.04±43.80μg/m3和85.84±29.65μg/m3,PM_(2.5)和TSP的百分比为0.79;白马泉TSP与PM_(2.5)的日均浓度分别为92.17±41.56μg/m3和72.30±28.55μg/m3,二者百分比为0.78。PM_(2.5)是TSP的主要组分。PM_(2.5)质量浓度昼夜变化明显,白天高于夜晚。阳离子与阴离子电荷总和之比值接近1。四教总离子浓度占TSP和PM_(2.5)的质量分数分别是26.10%和31.04%,而白马泉的分别为21.34%和24.07%。SO2-4、NO-3、NH+4为颗粒物中无机离子的主要组分,其昼夜浓度变化明显。相关性分析显示,两地的离子来源和组成形式均有所差异。NO-3/SO2-4在0.7以下,说明雅安市以固定污染源为主。PM_(2.5)中硫和氮的转化率均值均大于0.1,说明发生了二次转化,并且SO2的转化率远大于NO2。  相似文献   

15.
利用SMOKE(Sparse Matrix Operating Kernel Emissions)-WRF(Weather Research Forecast)-CMAQ(Community Mualtiscale Air Quality)空气质量模型模拟系统,评估了乐山市不同污染等级下应急措施效果。结果表明:(1)红色预警措施下污染物削减比例最高,可有效减少47.1%SO_2、42.6%NO_X,30.0%PM_(10)以及21.9%VOCs排放;橙色预警措施可减排42.7%SO_2、35.3%NO_X、20.9%PM_(10)以及19.8%VOCs;黄色应急措施可减排40%SO_2、20.1%NO_X、18.8%PM_(10)以及15.5%VOCs;(2)实施红色预警应急措施可有效降低PM_(2.5)浓度8%~9%,实施橙色预警应急措施可有效降低PM_(2.5)浓度8%,实施黄色预警应急措施可有效降低乐山市PM_(2.5)浓度6%~7%,不同预警等级下PM_(2.5)的浓度下降比例差异不大;(3)红色预警下工业源管控力度显著大于橙色及黄色,然而由于扬尘源的管控未加严,红色预警下的PM_(2.5)浓度下降幅度相比橙色和黄色增加较少,建议加强扬尘源管控,切实减少颗粒物排放;(4)区域联动应急下,乐山市PM_(2.5)浓度下降比例相比单独应急下增加5%~6%,表明区域联防联控的重要性。  相似文献   

16.
沙尘对空气质量特别是空气中TSP,PM_(10)和PM_(2.5)浓度有重要影响。为探讨沙尘对空气质量的影响,在位于准噶尔盆地南缘荒漠-绿洲交错带的准噶尔生态环境观测站开展了近地面空气颗粒物的连续监测实验及气象观测实验;结合HYSPLIT模型对典型沙尘事件中空气颗粒物的运动轨迹进行模拟;分析了沙尘全过程空气颗粒物分布特征及颗粒物的输送特征。结果表明:在2015-09-13日的沙尘事件对空气中颗粒物TSP、PM_(10)和PM_(2.5)的浓度分布产生影响严重,TSP、PM_(10)和PM_(2.5)的质量浓度分别达到了412μg/m~3、354μg/m~3和190μg/m~3,远超过了国家二级空气质量标准;TSP、PM_(10)和PM_(2.5)的质量浓度显著相关,其中PM_(2.5)和PM_(10)的相关系数达0.993,颗粒物轨迹分析显示,沙尘主要来源于北面的古尔班通古特沙漠,为大风输送所致。  相似文献   

17.
选取香港环境保护署设立的5个代表性站点(可归类为路边站、一般站及背景站)2016年的监测结果,对获取的各类污染物(PM_(2.5)、PM_(10)、NO_2、NO_X、SO_2、O_3)浓度变化特征进行对比研究,结果表明:(1)三类站点颗粒物及SO_2浓度年均值差异较小,体现了其区域性的污染特性,NO_2与NO_X年均值均为路边站一般站背景站,而O_3则相反,路边站最低而背景站最高;(2)各类站点PM_(2.5)与PM_(10)季节差异表现为夏季最低而冬季最高,O_3最低值也出现在夏季;(3)三类站点大气污染物日变化特征差异显著,路边和一般站NO_2与NO_X日变化表现为"早晚双峰"型,背景站变化幅度较小;路边站、一般站颗粒物日变化表现为单峰型,峰值出现在晚间22∶00,背景站变化幅度较小;O_3在路边站和一般站呈现双峰型变化,而在背景站为单峰型,峰值出现在下午15∶00左右;(4)所有站点PM_(2.5)、NO_X及O_3"假日效应"明显,具体表现为:PM_(2.5)和O_3浓度在假日全天浓度高于工作日;路边站和一般站的NO_X浓度在假日0∶00~8∶00时段高于工作日,其余时间均低于工作日。  相似文献   

18.
阐述了国内外主要的固定源PM_(2.5)的标准测试方法及测试仪器,并对实测结果进行了对比及分析,测定金属板式湿式电除尘器PM_(2.5)质量浓度的排放范围是0.4~4.6mg/m~3,导电玻璃钢湿式电除尘器是0.2~3.4mg/m~3。  相似文献   

19.
2015年在南昌市6个国控点分四个季度采集了大气PM_(2.5)样品,分析了其主要化学组分,并对PM_(2.5)质量浓度进行了重构。结果表明:南昌市PM_(2.5)的主要化学组分为SO_4~(2-)、OC、NO_3~-、NH_4~+和EC,占比具有明显的时空变化特征,硫酸盐在第二、三季度最大,硝酸盐在第一、四季度最大,SO_4~(2-)和NH_4~+在石化点位最高,NO_3~-在京东镇政府点位最高,OC和EC在省外办点位最高;重构后,南昌市PM_(2.5)以硫酸盐、有机物、地壳类物质为主,说明2015年南昌市扬尘和二次硫酸盐源类对PM_(2.5)的贡献可能是主要的。  相似文献   

20.
选取北京市区为采样点,于2016年1月进行PM_(2.5)采集,并分析了PM_(2.5)和水溶性组分的污染特征和来源。结果表明,采样期间北京市PM_(2.5)质量浓度平均为67.7μg/m~3,水溶性离子是PM_(2.5)的主要组分,其中SO_4~(2-)、NO_3~-和NH_4~+之和占总离子的79.1%;Ca~(2+)和Mg~(2+)分别占PM_(2.5)质量浓度的2.5%和0.9%,海盐气溶胶和K~+分别占PM_(2.5)的3.6%和1.6%。采样期间NO_3~-/SO_4~(2-)为1.1,表明NO_2和SO_2主要来自移动源的贡献。北京市区冬季PM_(2.5)主要来自二次污染源、扬尘、生物质燃烧和海盐气溶胶,贡献率分别为42.351%、21.164%、16.314%和5.436%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号