首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
为探究电絮凝和电化学氧化法处理油田压裂返排液的机理,采用响应面法拟合了反应过程,考察了电化学反应动力学、活性物质以及电极板的形貌和成分的变化。结果表明,电絮凝和电化学氧化法的响应面模型相关性显著,精确度和可信度均在合理范围内,在最优实验条件下其对应的COD去除率分别可达88.2%和100.0%;压裂返排液经电絮凝和电化学氧化处理后去除COD的动力学分别适用于零级和一级动力学模型,反应速率常数分别为4.49 mg·(L·min)−1和0.005 4 min−1;电絮凝和电化学氧化处理压裂返排液起主要作用的活性物质分别是OH·和O2·;电絮凝反应后,阳极和阴极表面分别附有碳酸钙和絮体有机物,电化学氧化反应后,阳极和阴极表面分别覆盖着致密的有机污染物和钙镁碳酸盐。  相似文献   

2.
以石墨为阳极,钢板为阴极,主电极板间填充具有特异催化功能和导电性能的铁锰双金属改性活性炭催化剂颗粒,进行三维电催化氧化实验,以处理高浓度有机废水。通过浸渍煅烧法制备了铁锰双金属改性活性炭催化剂,且对催化剂的形貌和结构进行了表征和分析;考察了电压、初始pH、曝气量和反应时间等工艺参数对电催化氧化去除乙腈的影响,再确定最佳实验条件后,考察了三维电催化氧化处理有机废水的稳定性、处理实际有机废水的效果。结果表明:铁锰初始比例为1∶2、煅烧温度为550 °C、投加量为300 mg·L−1、电压为24 V、初始pH为7、曝气量为4 L·min−1时,三维电催化氧化反应60 min处理效果最佳,乙腈去除效率达到96.1%,5次循环实验乙腈去除率仍能保持88.7%。且在处理实际废水中,也能保持高效的去除性能,并能同步去除氨氮。  相似文献   

3.
构建了双室混合生物阴极微生物燃料电池(microbial fuel cell,MFC)处理高盐榨菜废水,探讨了不同电流强度对混合膜 MFC 脱氮的影响,并分析了产电特性及微生物群落特征。结果表明,高电流通量可缩短双室混合膜MFC的完全脱氮周期,且主要缩短的是稳定期周期。相对于其他3个实验组,电流强度最大的S3实验组硝酸盐平均去除速率((5.72±0.10) mg·(L·d)−1)与硝酸盐最高去除速率((8.45±0.15) mg·(L·d)−1)均最大,且实现总氮100%去除的时间最短(19 d),稳定期硝酸盐去除速率k (6.122 5 mg·(L·d)−1)最大,这说明增大电流强度可促进混合膜MFC 电营养反硝化。电营养反硝化菌可直接利用电子进行反硝化反应,而较大的电子通量给阴极电活性自养脱氮微生物提供了丰富的生命燃料。在产电方面,曝气阶段开路电压(S1、S2、S3、S4分别为750、729、721、699 mV)随外加电阻的增大而增大,最大功率密度相差却并不显著(1.09、0.94、1.04、1.02 W·m−3);停止曝气阶段,阴极室电子受体的减少,导致MFC产电性能普遍下降,外电阻最大的S1实验组开路电压(746 mV)与最大功率密度(0.77 W·m−3)为最高。高通量测序结果表明,承担电营养反硝化功能的菌群可能为norank_f_Hydrogenophaga,Azoarcus。以上研究结果可为后续双室混合膜 MFC处理高盐废水提供技术参考。  相似文献   

4.
采用自制的2-乙基蒽醌修饰石墨毡阴极,通过SEM、X射线衍射、循环伏安扫描曲线(CV)等方法对其微观形态和催化活性进行表征,并进行电化学降解土霉素废水二级出水实验研究。结果表明,2-乙基蒽醌修饰石墨毡阴极是良好的空气扩散电极,2-乙基蒽醌晶体的存在使石墨毡具有更高的电催化活性;当以钛涂钌铱DSA电极为阳极、2-乙基蒽醌修饰石墨毡为阴极,在电流密度0.06 A/cm2、极板间距4 cm、电解质浓度0.2 mol/L和不调节废水初始pH的条件下,电解60 min,土霉素废水二级出水COD可由258.7~269.2 mg/L降低至105.0~118.6 mg/L,出水水质满足《化学合成类制药工业水污染物排放标准》(GB21904-2008)要求,COD降解动力学符合一级动力学方程。  相似文献   

5.
为研究铁氰化钾对双室微生物燃料电池(MFC)阴极性能的改善效果,以碳毡和碳棒作为复合电极材料,乙酸钠为阳极电子供体,分别以氧气、铁氰化钾和氧气交替作为阴极电子受体.通过测定使用铁氰化钾作阴极电极液之前和之后的曝气阴极MFC的功率密度及极化曲线,比较曝气阴极MFC的内阻、开路电压(OCV)和最大输出功率的变化情况.实验结果表明,当以铁氰化钾作为MFC阴极电子受体时,MFC的内阻、开路电压和最大输出功率分别为24.2 Ω、744.2 mV和33.7 W/m3.曝气阴极MFC在采用铁氰化钾作电极液对阴极性能进行改善之前和改善之后的内阻由77.2 Ω降低到40.1 Ω,OCV和最大输出功率分别由517.9 mV和2.1 W/m3提高到558.2 mV和4.4 W/m3.研究表明,铁氰化钾本身不仅具有优良的接受电子的能力,而且对电极材料(碳毡和碳棒)的电化学性能具有明显的改善作用,使得使用铁氰化钾之后的曝气阴极MFC的产电性能有了明显且持久性的提高.  相似文献   

6.
作为一种广谱性抗生素,磺胺甲恶唑(SMX)在常规城市污水生物处理过程中去除率较低,仍需要发展高效的去除方法。为此,通过原位溶剂热生长法,在碳毡上合成Cu-Co双金属氢氧化物(CuCo-BH)非均相催化剂,且在此基础上开展了类芬顿催化剂催化降解SMX的研究。对催化剂的SEM、TEM、XPS和XRD表征结果表明,CuCo-BH在碳毡上异向生长并呈棒状结构,宽度为40~115 nm,最大长度可达650 nm。在生长温度为105 ℃、反应时间为5 h的条件下,制备得到性能较好的CuCo-BH催化剂,在pH=7、H2O2=50 mmol·L−1、反应时间60 min的条件下,对初始浓度为50 mg·L−1的SMX去除率达到100%;在SMX=3 mg·L−1、H2O2=15 mmol·L−1、pH=7、反应时间为30 min的条件下,催化剂重复使用5次,SMX的去除率仍高于94%。·OH和${\rm{O}}_2^{ \cdot - }$的淬灭实验以及电子顺磁共振波谱仪(ESR)的测定分析结果表明,·OH对SMX的降解起到了关键的作用。以上研究结果可为SMX在污水深度处理中的高效去除提供一种新的方法。  相似文献   

7.
针对气体影响地下渗滤系统的渗透性及污水处理效果的问题,用地下渗滤系统处理不同曝气程度的生活污水,研究曝气对不同深度基质理化性质(渗透系数、体积含水率、气体类型及浓度)和出水水质的影响。结果表明,曝气增加了−130~−100、−40~−10 cm处的渗透系数,降低了−100~−70 cm处的渗透系数,与−70~−40 cm处的渗透系数不存在相关关系;曝气增加了−70 cm处的体积含水率,降低了−100 cm和−40 cm处的体积含水率,对−10 cm处的体积含水率几乎没有影响;曝气增加了各深度处的CO2、N2O释放浓度,与各深处的CH4释放浓度不存在相关关系;曝气增加了$ {\rm{NH}}_{\rm{4}}^{\rm{ + }}$-N和COD去除率,与$ {\rm{NO}}_3^{\rm{ - }}$-N、$ {\rm{NO}}_2^{\rm{ - }}$-N和TP去除率不存在相关关系。探明了气体对地下渗滤系统处理性能的影响,为气体堵塞及其预防提供了参考。  相似文献   

8.
以聚乙烯吡咯烷酮作为改性剂,利用水热法合成了表面具有丰富氧空位的CuFeO2@PVP复合催化剂。通过XRD、FT-IR、SEM、TEM和EPR等方法证实了催化剂的成功合成及确定了催化剂的形貌和微观结构。采用UV-vis DRS、PL、EIS和IT等方法证实了CuFeO2@PVP比CuFeO2具有更好的光学性能及光电性能。不同体系下的降解实验结果表明,CuFeO2@PVP的光电催化活性比纯相CuFeO2有明显的提升,反应速率是纯相CuFeO2的1.79倍,去除率相比于单独的吸附、阳极氧化、光催化、电催化和电芬顿体系分别提高了87.9%、68.2%、67.3%、67%和9.8%,说明可见光、电场和异相催化剂间存在协同效应。进一步探究了催化剂投加量、电流密度、溶液pH、共存离子种类对异相光电芬顿体系降解氧氟沙星(OFX)的影响。结果表明,在最佳催化剂投加量为0.4 g/L、最佳电流密度为4 mA/cm2的条件下,CuFeO2@PVP光电Fenton体系在120 min时对10 mg·L−1 OFX的降解率达到94.3%。pH在5-9之间时对OFX的降解呈现抑制作用,pH在3-3.6之间时降解效果基本持平。溶液中的Cl对OFX的降解起到轻微的促进作用,而NO3、PO43−和CO32−会抑制体系对OFX的降解。此外,5次循环降解实验后,CuFeO2@PVP的降解效率降低了13.8%,表明其具有良好的稳定性。自由基淬灭实验和电子顺磁共振结果表明·OH是最主要的活性自由基并基于上述结果推测出可能的降解机理。  相似文献   

9.
针对2种脱氮除磷工艺的剩余污泥,在微氧条件下,以花生渣厌氧发酵产生的VFAs为碳源,控制反应时间为5 h,DO≤0.2 mg·L−1,COD为650~750 mg·L−1,对比2种不同工艺的剩余污泥合成聚羟基脂肪酸酯(PHAs)的量,并探究了增设前置曝气对微氧条件下剩余污泥合成PHAs的影响。结果表明,在微氧条件下,连续流中同步亚硝化反硝化脱氮除磷系统二沉池的剩余污泥(R1)和采用A2O工艺的实际水厂的剩余污泥(R2)合成PHAs最高量分别为108.6 mg·g−1和58.58 mg·g−1,R1比R2更具有合成PHAs的能力;在增设前置曝气实验中,曝气时间的延长和曝气量的增大均可促进PHAs的合成;当曝气气量为50 L·h−1时,曝气20 min后,R1合成的PHAs最高为172.5 mg·g−1。氧化还原电位(Eh)是微氧条件下PHAs合成过程中的重要指示参数,当Eh值为最低时,PHAs合成量最多。以上结果可为脱氮除磷工艺剩余污泥利用廉价碳源合成PHAs提供参考。  相似文献   

10.
采用MABR膜曝气生物膜工艺对北方地区某污水处理站进行了改造,通过在原CAST工艺中增加MABR膜组件,并新建二沉池,从而实现对原生化系统的升级改造;同时,新建了高密池和V型滤池深度处理系统,以控制出水水质。MABR膜曝气生物膜工艺的改造仅新增了曝气膜组件,无需在原生化池内新增设备和土建,且膜曝气效率高、能耗低,无需新增加鼓风机,一次性投资约为850 元·m−3,改造工期约15 d,具有改造工期短和运行成本低的优势。改造后,MABR膜曝气生物膜反应器的氨氮进水均值为39 mg·L−1,出水均值为3 mg·L−1,平均去除率为92 %;TN进水均值为63 mg·L−1,出水均值为11 mg·L−1,平均去除率为83 %;TP进水均值为7.5 mg·L−1,出水均值为0.9 mg·L−1,平均去除率为88 %;COD进水均值为367 mg·L−1,出水均值为35 mg·L−1。此外,结合后续的深度处理段,通过化学除磷可保持污水处理站出水TP低于0.4 mg·L−1。改造后,污水处理站出水水质可稳定达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A标准。  相似文献   

11.
为探究光催化降解蒽醌染料活性蓝19(RB19)过程中蒽醌的光敏特性对去除率的影响,以石墨相氮化碳/溴化氧铋(g-C3N4/BiOBr)为光催化材料,引入光照(vis)与过二硫酸盐(PS),构成协同催化氧化体系,考察光激发产物半醌自由基(Q·)的形成及其参与、增强体系氧化能力的作用机制,采用单因素(材料投加量、初始pH、活性蓝19初始质量浓度、过硫酸盐投加量、光照强度)分析方法,探究Q·增强效应的影响,使用降解动力学方法及LC/MS评估降解后废水的毒性。结果表明:Q·的形成不仅加速了过硫酸盐的活化过程,Q·与氢醌(H2Q)、醌(Q)形成的循环作用也强化了材料的光催化效应,在模拟太阳光照射下(300 W),催化剂用量为0.1 g·L−1和PS投加量为400 mg·L−1时,Q·引发的长链式自由基反应使该体系在 80 min内对40 mg·L−1的RB19的降解率可达到100%;反应条件对催化效果影响的大小顺序为材料投加量>初始pH>RB19初始质量浓度>过硫酸盐投加量>光照强度;Q·中间体的形成有效提高了体系内自由基的含量,是反应后废水毒性显著降低的主要原因。由此可知,体系内Q·所引发的自降解自循环、长链式自由基效应是实现RB19高效降解的主要因素。本研究结果可为开发蒽醌类染料废水处理技术的开发及实际应用提供参考。  相似文献   

12.
莠去津(atrazine)是一种广泛使用的除草剂,其生产废水具有高有机物浓度和高盐度等特点,处理难度大,为此针对性地开发和评价了活性炭负载三价铁催化剂(AC-Fe3+)光催化臭氧氧化对莠去津生产废水的降解效果,考察了催化剂投加量、紫外功率、曝气强度对该废水COD和NH3-N降解的影响,探究了负载型光催化氧化体系下的降解机理及吸附降解动力学。结果表明,加入AC-Fe3+催化剂后,降解效果得到显著的提升,AC-Fe3+可以有效延缓高盐对处理过程的不利影响。当催化剂投量为40 g·L−1,紫外线功率为14 W,曝气强度为800 L·h−1时,废水COD和NH3-N的去除率分别可以达到70.9%和87.7%。研究结果可为含高盐、高有机物工业废水的高效处理提供一种新思路。  相似文献   

13.
中空纤维膜接触器具有界面面积大、传质效率高等特点而被广泛应用于气液传质中。为改善聚偏氟乙烯(PVDF)中空纤维膜接触器的臭氧传质效果,利用聚二甲基硅氧烷(PDMS)对其进行涂覆改性以提高其疏水性,进而提高其臭氧传质和降解污染物的能力。利用ATR-FTIR、SEM-EDS和接触角等方法对膜进行表征,并对其臭氧传质和氧化降解刚果红的效果进行了研究。结果表明,PDMS涂层成功制备,PDMS-PVDF改性膜的疏水性明显提升,接触角由88.9°提升至114.5°。传质实验结果表明,改性膜接触器体积传质系数可达0.077 8 s−1,比原PVDF膜提高了26.2%。改性膜接触器在长期运行实验(12 h)中出水臭氧浓度保持稳定。改性膜接触器30 min内可降解99.2%的刚果红,降解速率常数为0.155 min−1,是原PVDF膜的1.4倍。以上研究结果表明,PDMS-PVDF改性膜接触器具有更高的疏水性和臭氧传质性能,长期运行效果稳定,在污染物处理方面具有一定应用前景。  相似文献   

14.
为解决非均相类芬顿法催化剂分离回收困难的问题,采用共沉淀法制备了催化剂聚铁硅盐掺杂羟基氧化铁(PFSC-FeOOH)。利用X射线衍射(XRD)、扫描电子显微镜(SEM)以及傅里叶变换红外光谱(FT-IR)等技术手段对催化剂进行了表征。以苯酚为目标污染物,分别考察了催化剂用量、H2O2用量、反应温度、苯酚初始浓度和pH对PFSC-FeOOH催化H2O2去除苯酚效果的影响,探究了可能的反应机理。结果表明:在反应时间为40 min、pH=4、H2O2投加量为297 mmol·L−1、催化剂PFSC-FeOOH投加量为3 g·L−1、反应温度为室温((25±1) ℃)的条件下,苯酚降解率为90.48%;反应符合准一级反应动力学,速率常数为 0.0415 min−1;反应过程中羟基自由基(·OH)起主要作用,苯酚的分子结构被氧化破坏;反应后,催化剂易于沉降分离,沉降速度为0.1 m·min−1。以上研究结果可为实际有机废水的处理提供参考。  相似文献   

15.
设计了一种新型双室空气阴极微生物燃料电池(MFC)并将其作为生物传感器,与传统双室空气阴极MFC进行对比,考察其电化学性能及用于快速检测BOD的性能。结果表明:新型空气阴极MFC可有效提高功率密度并降低内阻,其功率密度最高为897 mW·m−2,而内阻最低为92 Ω;该MFC可用于直接快速检测高浓度有机物的BOD,对醋酸钠底物的线性检测限为1 280 mg·L−1,在此底物浓度下MFC的检测时间为31.2~66 h,线性可决系数R2为0.97~0.99;对于GGA底物的线性检测限为1 250 mg·L−1,在此底物浓度下MFC的检测时间为33~67 h,线性可决系数R2为0.98。本研究可为MFC型BOD检测传感器的性能优化提供参考。  相似文献   

16.
臭氧催化氧化-BAF组合工艺深度处理抗生素制药废水   总被引:1,自引:0,他引:1  
针对抗生素制药废水组分复杂、毒性强、难生物降解的特点,以Ce负载天然沸石作为催化剂(Ce/NZ),采用臭氧催化氧化-曝气生物滤池(BAF)组合工艺对抗生素制药废水二级生化处理出水进行深度处理。结果表明,Ce/NZ催化剂可显著改善臭氧预处理单元的处理效率,在臭氧进气浓度为50 mg·L−1、臭氧进气量为600 mL·min−1、催化剂用量为1 g·L−1、臭氧反应时间为120 min的条件下,臭氧催化氧化预处理对抗生素制药废水的COD去除率达到43%,平均COD由220 mg·L−1降至125 mg·L−1,BOD5/COD由0.12升至0.28,废水的可生化性得到显著提高。臭氧预处理单元出水采用BAF进行生化处理,在进水平均COD为125 mg·L−1、平均NH4+-N为12 mg·L−1、水力停留时间为4 h、气水比为4∶1的条件下,COD和NH4+-N的平均去除率分别为62%和64%。组合工艺处理后出水平均COD和NH4+-N分别为46 mg·L−1和4.1 mg·L−1,出水水质可以稳定达到《发酵类制药工业水污染物排放标准》(GB 21903-2008)。相较于单独BAF工艺,组合工艺出水COD和NH4+-N平均去除率分别提高了66%和15%,出水水质明显优于单独BAF工艺出水。  相似文献   

17.
传统非均相电芬顿(EF)技术主要面临活性氧物种生成速率慢、催化剂稳定性差等不足。将FeCo-ZIF和三聚氰胺(MA)共混(质量比为1:100)煅烧,成功制备出氮掺杂碳纳米管封装铁钴合金阴极催化剂(NCNT@FeCo),可强化EF高效去除水中磺胺甲恶唑(SMZ,初始质量浓度为20 mg·L-1),在近中性条件下50 min内即可完全去除,降解速率常数可达0.057 min-1,是单独煅烧FeCo-ZIF制备的裸露型双金属催化剂FeCo-N的3倍,且前者的金属浸出总量(0.27 mg·L-1)仅为后者(1.79 mg·L-1)的15.1%。循环回用5次后,60 min内NCNT@FeCo对SMZ的去除率仍可达到96.0%。扫描电子显微镜表征与电化学阻抗测试结果表明,由MA诱导生成的N-CNT,不仅通过封装结构有效限制了内部铁钴合金受强氧化性环境腐蚀破坏,而且显著加速了内部铁钴合金的电子传递速率,N-CNT@FeCo的独特封装结构使其兼具高催化活性和高稳定性。本研究为高效稳定的阴极催化剂提供了稳定、可控、...  相似文献   

18.
通过水热法成功制备了改性牡蛎壳粉/Ce-N-TiO2复合光催化剂,采用扫描电子显微镜、比表面积测试和X射线光电子能谱分析对其微观形貌、物化性质进行表征分析,并研究其在模拟太阳光下吸附-光催化协同降解草甘膦的降解性能。结果表明:改性牡蛎壳粉单独吸附与Ce-N-TiO2单独光催化叠加理论降解率低于复合光催化剂协同作用降解率,充分证明两者复合后具有良好的吸附-光催化协同作用;在前120 min内复合材料的降解速率明显高于理论叠加曲线的降解速率,光催化降解草甘膦中有机磷的速率常数由1.179×10−2 min−1提升至2.441×10−2 min−1;在实验范围内,改性牡蛎壳粉/Ce-N-TiO2吸附-光催化协同降解草甘膦的最佳反应条件为:pH为5、实验温度为35 ℃、催化剂投加量为1.0 g·L−1、磁力搅拌器转速为300 r·min−1、光功率设定为400 W。  相似文献   

19.
为解决传统填料亲水性差、挂膜速度慢等问题,对高密度聚乙烯(HDPE)填料进行亲水改性并改善填料的挂膜性能及在移动床生物膜反应器(MBBR)中的应用效果,用浸涂的方式将纳米SiO2、聚乙烯醇(PVA)、聚多巴胺(PDA)等材料涂覆在HDPE填料表面,对改性后填料进行接触角、SEM、FT-IR和XPS表征以及MBBR挂膜启动实验,研究化学需氧量(COD)、氨氮(NH3-N)、总氮(TN)、总磷(TP)的去除效果以及对填料挂膜时间、生物膜量、蛋白质和多糖含量的影响。结果表明:改性后,填料接触角由94.82°降至 60.1°,填料亲水性明显增强;填料表面出现褶皱,粗糙度增加;上述材料成功负载在填料表面并引入了亲水基团且未改变填料基本结构;填料挂膜时间由25 d提前至16 d,挂膜时间提前了9 d,COD、NH3-N、TN、TP去除率分别达到94.9%、95.4%、83.5%、71.6%,与改性前比分别提高了9.3%、6.7%、13.7%、11.5%;填料的生物膜量是改性前的1.57倍,从27.35 mg·g−1提高到42.87 mg·g−1,其中蛋白质和多糖的含量分别从改性前的6.48 mg·g−1和3.38 mg·g−1提高到8.83 mg·g−1和5.82 mg·g−1,分别为改性前的1.36倍和1.72倍。由此可以看出,表面涂覆可以提高HDPE填料的亲水性,改性后的HDPE填料可以缩短在MBBR中的挂膜时间及强化对COD、NH3-N、TN、TP的去除效果。本研究结果可为HDPE填料亲水改性的深入研究及在MBBR中的实际应用提供参考。  相似文献   

20.
现行工业低温烟气脱硝技术需对烟气及整个反应系统进行整体加热以达到催化剂高效反应的温度,存在能耗高的问题。由于脱硝反应仅在高温催化颗粒的微界面上进行,提出以高温催化剂颗粒为循环热载体,利用旋流流化反应器使其与低温烟气中的氮氧化物快速接触,发生脱硝反应的新方法。通过CFD和DEM耦合计算,模拟研究了旋流流化反应器中高温催化剂颗粒和低温烟气间的传热特性。调控因素主要包括进口气速、进料速率、进口烟气温度。结果表明,在催化剂进料速率为25 g·s−1、进口气速为7.5 m·s−1 (空速81 000 h−1) 时,反应器出口催化剂平均温度可达200 ℃以上 (催化剂高效活性温度区间为200~300 ℃) ,对比直接加热低温烟气的方式,不考虑加热与传热过程热量损失,可直接节约能耗28.36 %。本研究对比低温烟气脱硝中整体加热烟气的方式,可为低温烟气脱硝技术的优化提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号