首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 283 毫秒
1.
代谢表面活性剂菌处理含油污泥的研究   总被引:6,自引:0,他引:6  
试验采用异位生物修复技术堆肥法,对某炼厂油泥进行生物修复处理研究.用微生物代谢的表面活性剂对油泥进行预处理,洗脱油泥中部分油分后进行堆肥试验,投加从油田含油土壤中获得的以石油为唯一碳源、代谢高效生物表面活性剂的微生物C-2菌、F-2菌以及无机营养物和疏松剂(锯末),降解油泥中的石油污染物.经过外源微生物和内源微生物共同作用120 d,油泥中的石油烃总量由22 910 mg/kg下降到3 000 mg/kg以下.试验利用色谱-质谱联用方法分析了降解前后石油组分的变化.菌株经传统方法鉴定为蜡状芽孢杆菌、枯草芽孢杆菌.  相似文献   

2.
石油烃(TPHs)在土壤中难以降解,并具有生物毒性,异位热脱附(ESTD)在修复石油烃污染土壤方面极具应用潜力。采用实验室模拟异位热脱附装置,研究了热脱附载气含氧量及土壤石油烃污染浓度对可萃取石油烃(EPHs)中柴油段(DRO)和重油段(ORO)的5种组分去除率的影响。结果表明:在初始浓度为5 000~20 000 mg·kg−1时,在20 min内的脱附率均不超过50%;当初始浓度增加到40 000 mg·kg−1、脱附时间为20 min时脱附率可以达到68.2%。热脱附时间为50 min时,40 000 mg·kg−1污染土壤的残余浓度为407.1 mg·kg−1。DOR组分相同时间的脱附率随污染浓度的升高而升高,ORO组分在50 min之内不能完全脱附,脱附率随着污染物浓度上升会出现先增大后减小的趋势。在250 ℃时,DRO中3个组分的去除率均随着气氛含氧量的增加而呈现明显的增长趋势。在400 ℃条件下,ORO中2个组分分别在含氧量为12%和15%时达到最高的去除率。本研究结果可为ESTD技术修复不同浓度的石油烃污染土壤的工程设计参数提供参考。  相似文献   

3.
自四川省长宁某石油烃-重金属镉复合污染土壤中,筛选出1株具有重金属镉(Cd)抗性和石油烃降解能力的菌株,采用吸附法将菌株固定于玉米芯生物炭上制备成固定化微生物,并探讨固定化微生物技术(IMT)对土壤石油烃的降解效率以及重金属固定化效果。鉴定结果表明,成功筛选出的具有Cd抗性的石油烃降解菌经鉴定属于柠檬酸杆菌属(Citrobacter sp.)。实验结果表明:固定化微生物修复石油烃-重金属镉复合污染土壤60 d后,固定化微生物对石油烃降解率达51.25%,显著高于游离菌组(40.44%)、生物炭组(31.11%)和空白组(15.18%)(P<0.05);同时,固定化微生物能够高效固定土壤重金属Cd,使其从可交换态、有机结合态向残渣态转变,可使其残渣态与初始土壤相比增加6.68倍;固定化微生物组的土壤pH较初始出现轻微下降,但维持于8.42~8.75;此外,固定化微生物可显著增加土壤细菌数量(2.48×108 cfu·g−1)(P<0.05),土壤脱氢酶活性、过氧化氢酶活性以及多酚氧化酶活性(P<0.05)。因此,采用生物炭固定化微生物技术,可在高效降解石油烃的同时,提高重金属Cd固定化效果。该研究结果可为IMT技术修复石油烃-镉复合污染土壤提供参考。  相似文献   

4.
聚乙醇酸(poly glycolic acid,PGA)因其良好的降解性能会加快其老化过程,可能比传统塑料具有更大的环境风险,因此,评估PGA在环境迁移中对污染物的载体效应尤为重要。选用PGA颗粒微塑料(microplastics,MPs)为研究对象,盐酸四环素(tetracycline hydrochloride,TCH)为代表性污染物,探究老化过程对PGA吸附TCH行为的影响。结果表明:PGA在经过15 d H2O2和H2SO4老化后,表面均变得粗糙,比表面积由0.017 m2·g−1分别增至0.327 m2·g−1和0.467 m2·g−1,官能团含量分别增加了1.89%和3.49%,接触角由83.19°分别降至81.58°和50.07°。吸附动力学均符合伪二级动力学模型,吸附等温线均符合Langmuir等温吸附模型。老化后PGA对TCH的吸附量均高于老化前,PGA-H2O2和PGA-H2SO4最大表观吸附量分别为0.617 mg·g−1和0.686 mg·g−1,是PGA老化前的1.05倍和1.17倍。  相似文献   

5.
为高效、稳定处理船舶生活污水,研究了船用景观一体化反硝化除磷装置面对短期水质波动的效能变化,采用富集反硝化聚磷菌(DPAOs)的ABR-CSTR连续流组合工艺耦合生态单元处理船舶生活污水,对比了ABR进水容积负荷(VLR)为1.2 kg·(m3·d)−1、COD为350 mg·L−1的基准条件,通过短期内提高进水中有机底物的浓度,来模拟1.5倍和2.0倍进水有机负荷的有机冲击,此外通过控制硝化液回流比及溶解氧获得应对冲击的调控策略。结果表明:在2种短期冲击下,COD去除率分别为94.1%和92.6%,出水BOD和TN可达标,生物单元出水磷平均为0.76 mg·L−1和1.14 mg·L−1,缺氧吸磷量为7.13 mg·L−1和5.82 mg·L−1,生态单元可深度降解氮磷及缓冲波动;在1.5倍VLR下,调整硝化液回流比由200%至300%,反硝化吸磷量由7.10 mg·L−1升至7.41 mg·L−1,在2.0倍冲击下,提高硝化液回流比对系统除磷帮助甚微,将DO从1.5 mg·L−1升至2.0 mg·L−1,吸磷量由5.17 mg·L−1升至6.01 mg·L−1,系统反硝化除磷效果得以提升;污泥特性方面,ABR内MLVSS/MLSS比值和EPS量随有机底物浓度的提高而上升,厌氧段EPS增幅最大,可由154.5 mg·g−1升至164.2 mg·g−1和183.4 mg·g −1。ABR-CSTR-生态单元一体化装置面对短期有机冲击具有稳定处理效果,研究结果可为船舶生活污水的治理提供参考。  相似文献   

6.
利用活性污泥-生物膜一体化反应器处理含苯酚废水,考察了反应器对苯酚和COD的处理效果以及反应器运行中生物膜干质量(SS)、挥发性干质量(VSS)、活性生物量、脱氢酶活性(DHA)、胞外聚合物(EPS)的变化,探究了生物膜特性与废水处理效果之间的关系。结果表明:在进水苯酚质量浓度由50 mg·L−1逐步提高到500 mg·L−1的过程中,苯酚和COD去除率均呈先降后升的趋势;当进水苯酚质量浓度为250 mg·L−1时,反应器能适应苯酚冲击,苯酚和COD去除率分别稳定在97%和60%以上;当进水苯酚质量浓度为500 mg·L−1时,苯酚去除率可达到99%,同期SS、VSS、活性生物量及DHA(22.03~57.07 mg·g−1)的变化亦反映出生物膜性能的提升,说明反应器对苯酚质量浓度变化的适应能力较强。此外,EPS质量分数为42.99~310.51 mg·g−1,蛋白质(PN)与多糖(PS)的质量比为0.67~1.39,且当初始苯酚质量浓度为250 mg·L−1时,PN/PS值最高,EPS亲水性低,生物膜可高效降解苯酚。以上研究结果表明,逐渐提高进水苯酚质量浓度能有效提高活性污泥-生物膜一体化反应器对苯酚的适应性和降解率。  相似文献   

7.
以葡萄糖和乙酸钠为混合碳源,采用调控耗氧有机污染物浓度(以COD计)、表面上升气速和污泥沉降时间的方法培养好氧颗粒污泥,对污泥颗粒化过程中的污泥特性变化和污染物去除效果进行研究。结果表明:第110 天,好氧颗粒污泥培养成功,颗粒粒径主要分布在1.43~2.26 mm,污泥容积指数(SVI30)为28 mL·g−1,沉降速度为94 m·h−1,污泥挥发组分比例(MLVSS/MLSS)为0.72。通过对胞外聚合物(EPS)含量变化分析可知,在污泥颗粒化过程中,多糖(PS)含量变化不大,基本维持在25 mg·g−1,蛋白质(PN)含量明显增加,由13.98 mg·g−1增加到41.86 mg·g−1,说明PN对好氧颗粒污泥的形成具有重要作用。好氧颗粒污泥对COD、TN和TP的去除率分别达到95%、80%、70%,具有良好的除污效果。以上研究结果可为好氧颗粒污泥的培养提供参考。  相似文献   

8.
针对富含木质纤维素底物利用效率低的问题,通过在中试厌氧消化系统中共接种瘤胃微生物和厌氧污泥来改善水稻秸秆中木质纤维素的水解,采用逐步提升底物有机负荷(OLR)的方式,评估了接种后水稻秸秆的厌氧消化效率。结果表明,在反应体系底物有机负荷达到4.26 g·(L·d)−1(以VS计)时,系统表现出最佳的厌氧消化性能,此时沼气产率为528 mL·g−1 (以VS计),甲烷产率为287 mL·g−1,容积沼气生产强度达到2.20 L·(L·d)−1。在反应器有机负荷从1.05 g·(L·d)−1提升到4.26 g·(L·d)−1的运行过程中,系统的纤维素降解率稳定在(71 ± 2)%,半纤维素降解率稳定在(92 ± 4)%,木质素降解率稳定在(15 ± 3)%。这种稳定性表明反应器的连续运行成功地形成了高效的木质纤维素降解体系,结果可为实际规模化应用提供参考。  相似文献   

9.
为考察氨氮浓度对中温厌氧消化处理马铃薯加工废水的影响,通过批式实验,探究该类废水厌氧消化处理的氨氮抑制阈值。结果表明:氨氮浓度为3 000 mg·L−1 (TAN≈3 659 mg·L−1)时,累积产甲烷量降低至276.1 mL·g−1且出现产甲烷迟滞期;氨氮浓度为4 000 mg·L−1 (TAN≈4 468 mg·L−1)时,累积产甲烷量仅为对照组的39.2%,迟滞期明显延长了7.2 d;高浓度氨氮抑制造成了以丙酸为主的VFAs积累和有机物(蛋白质等)降解不完全,这是COD去除率下降的主要原因;VFAs作为氨氮抑制发生时COD的主要组分,其积累可作为马铃薯加工废水厌氧消化过程发生氨氮抑制的指示因子;马铃薯加工废水中温厌氧消化的氨氮阈值约为3 000 mg·L−1。该结果可为马铃薯加工废水的高效处理与资源化利用提供参考。  相似文献   

10.
针对2种脱氮除磷工艺的剩余污泥,在微氧条件下,以花生渣厌氧发酵产生的VFAs为碳源,控制反应时间为5 h,DO≤0.2 mg·L−1,COD为650~750 mg·L−1,对比2种不同工艺的剩余污泥合成聚羟基脂肪酸酯(PHAs)的量,并探究了增设前置曝气对微氧条件下剩余污泥合成PHAs的影响。结果表明,在微氧条件下,连续流中同步亚硝化反硝化脱氮除磷系统二沉池的剩余污泥(R1)和采用A2O工艺的实际水厂的剩余污泥(R2)合成PHAs最高量分别为108.6 mg·g−1和58.58 mg·g−1,R1比R2更具有合成PHAs的能力;在增设前置曝气实验中,曝气时间的延长和曝气量的增大均可促进PHAs的合成;当曝气气量为50 L·h−1时,曝气20 min后,R1合成的PHAs最高为172.5 mg·g−1。氧化还原电位(Eh)是微氧条件下PHAs合成过程中的重要指示参数,当Eh值为最低时,PHAs合成量最多。以上结果可为脱氮除磷工艺剩余污泥利用廉价碳源合成PHAs提供参考。  相似文献   

11.
某油田产生大量的稠油废水,而蒸汽开采石油又需要足够的洁净水,两者的综合效应导致水资源的短缺。为了达到良好的经济效益和社会效益,设计了一套20 m3·h−1的机械蒸汽压缩(mechanical vapor compression,MVC)工艺回收废水的装置。该系统能利用稠油废水的低温废热,具有运行能耗低,而且对废水水质进口要求低。系统出水冷凝水的水质参数为:总硬度≤182.30 mg·L−1、Cl≤10.00 mg·L−1、Ca2+≤1.00 mg·L−1、含油≤2.00 mg·L−1、电导率(25 °C) ≤60.00 μS·cm−1、二氧化硅≤3.50 mg·L−1,满足注汽锅炉给水的质量标准。通过对MVC工艺运行结果的分析,阐述稠油废水沸点升高、浓缩倍数、冷凝水水质、污垢等因素对MVC工艺的影响程度,特别是冷凝水水质的影响因素及变化趋势。上述研究结果为大规模治理稠油废水,实现零排放奠定实践基础。  相似文献   

12.
为解决生物絮凝养殖水体含磷物质积累,初步研究了载铁牡蛎壳粉吸附除磷性能及相关机理。结果表明,8 g·L−1载铁牡蛎壳粉在初始TP浓度为20.00~50.00 mg·L−1吸附效果最佳,TP去除率由(84.94±0.94)%增至(87.35±1.06)%,吸附量由(2.37±0.03) mg·g−1增至(5.45±0.22) mg·g−1;当pH为2.00~6.00时,TP去除率大于(80.13±3.27)%,吸附量大于(2.04±0.02) mg·g−1;碳酸氢根的存在对载铁牡蛎壳粉吸附除磷有明显的抑制作用。X射线衍射结果表明,载铁牡蛎壳粉表面覆盖成分为Fe2(PO)5和Fe4(PO4)2O。载铁牡蛎壳粉吸附过程符合Freundlich模型和准二级动力学模型,最大吸附量为9.81 mg·g−1,吸附过程存在物理吸附和化学吸附,主要由化学吸附决定,膜扩散和颗粒内扩散为主要限速步骤,配位交换和静电吸附为主要吸附机理。以上研究结果可为实际养殖废水除磷方法提供参考。  相似文献   

13.
本研究将固定化微生物与氮源缓释相结合,以提高一般固定化微生物在氮源缺乏环境中的生物降解效率。利用尿素作为缓释氮源,通过将聚乙烯醇-海藻酸钠混合凝胶(包含尿素)在3% CaCl2 饱和硼酸溶液中一次交联,在0.5 mol·L−1硫酸钠溶液中二次交联,最终制得的缓释尿素固定化微生物颗粒包封率高达98%以上,溶胀率在15%~25%,同时有较高的机械强度。在无氮条件下,颗粒可在4、8、12 h内分别完成对100 mg·L−1苯酚、吡啶或喹啉的降解;在高碳氮比的模拟焦化废水环境下,可在6 h内完成对100 mg·L−1苯酚、10 mg·L−1吡啶及10 mg·L−1喹啉混合底物的降解。另外,固定化微生物颗粒所包含的尿素提供的氮源能满足固定化微生物每天降解100 mg·L−1苯酚并持续20 d。以上研究结果表明所制备的缓释尿素固定化微生物颗粒可应用于氮源匮乏的污水治理中并有较好的应用效果。  相似文献   

14.
化学氧化和微生物联合修复是去除土壤中石油烃 (PHC) 的有效技术,但氧化后土壤中残留PHC的生物有效性较低,难以进一步生物降解。向过硫酸盐 (PS) 氧化后的土壤中加入不同质量浓度和质量比的表面活性剂十二烷基苯磺酸钠 (SDBS) 和聚氧乙烯山梨醇酐单油酸酯 (Tween 80) ,探究其对PS氧化后土壤中PHC解吸、土著微生物群落结构和丰度、PHC缺氧降解的影响。结果表明,缺氧条件下PS氧化和微生物联合降解去除了土壤中30.84%的ΣPHC (C10~C30) 。向PS氧化后土壤中加入SDBS和Tween 80能够有效促进PHC解吸,解吸效果随表面活性剂质量浓度和混合体系中Tween 80比例的增加而增加。加入3 000 mg·L−1表面活性剂继续缺氧培养120 d后,氧化后土壤中Firmicutes和Proteobacteria的总数量较对照组减少了2.13~2.58个数量级,抑制了土壤中PHC的缺氧降解。加入800 mg·L−1表面活性剂后,土壤中Firmicutes和Proteobacteria的总数量较对照组增加了0.17~0.81个数量级,促进了PHC的缺氧降解,在SDBS∶Tween 80=1∶3时ΣPHC残留率最低 (较对照组降低了15.80%) 。本研究结果可为深层石油污染土壤的微生物修复提供参考。  相似文献   

15.
为考察ZnO NPs粒径效应对人工湿地运行性能的影响,在进水COD约为216.00 mg·L-1、总氮约为11.10 mg·L−1和总磷约为3.84 mg·L−1的条件下连续运行126 d,对暴露于不同粒径ZnO NPs(10.00 mg·L−1)的人工湿地脱氮除磷性能、填料渗透系数、胞外聚合物(extracellular polymeric substances,EPS)产量和特性以及微生物群落结构和多样性的变化进行了研究。结果表明:与对照组(未投加ZnO NPs)相比,进水中投加15、50和90 nm ZnO NPs后,人工湿地对COD的去除率分别下降了8.73%、7.55%和6.97%;氨氮和总氮的去除率分别下降了21.96%和10.95%、17.75%和10.00%以及15.34%和3.78%。高通量测序结果表明,ZnO NPs粒径越小,对硝化菌属Thauera的抑制作用越明显。投加ZnO NPs后,其释放的Zn2+会与水中磷酸盐结合生成磷酸锌等不溶物,同时会增加异养硝化菌Acinetobacter的相对丰度,从而导致总磷的去除率比对照组提高了42.49%~56.38%。此外,与对照组(97.18 mg·g−1)相比,投加15、50和90 nm的ZnO NPs后EPS的产量分别增加到212.97、156.30和128.53 mg·g−1。EPS分泌量的增大,导致填料渗透系数快速降低,在运行83 d后分别下降了71.17%、67.83%和37.50%。  相似文献   

16.
微生物降解是处理土壤中石油烃 (PHC)污染的有效技术,目前对PHC微生物降解的研究多集中在好氧条件下,对PHC缺氧微生物降解的研究较少,PHC缺氧降解规律尚不清楚。以PHC污染的深层土壤为对象,探究不同质量分数 (500、1 500、5 000 mg·kg−1)的硫酸盐、硝酸盐或混合电子受体对土壤中土著微生物丰度、群落结构以及PHC缺氧降解的影响规律。结果表明,150 d缺氧培养后,添加相同种类电子受体的土壤处理中细菌丰度、潜在PHC降解菌 (变形菌门和厚壁菌门)丰度随电子受体的质量分数增加而增加;添加相同质量分数的不同种类电子受体土壤处理中细菌丰度、潜在PHC降解菌丰度从高到低分别为硝酸盐、混合电子受体、硫酸盐。添加相同种类电子受体的土壤处理中ΣPHC (C10~C30)和C1 (C10~C16)、C2 (C17~C23)、C3 (C24~C30)组分的降解率随着加入电子受体质量分数增加而增加;相同质量分数的不同种类电子受体土壤处理中ΣPHC和C1、C2、C3组分的降解率从高到低分别为硝酸盐、混合电子受体、硫酸盐。土壤中PHC缺氧降解率与细菌丰度、潜在PHC降解菌丰度均存在正相关关系。研究结果可为石油烃污染土壤的修复技术研发提供技术支持。  相似文献   

17.
针对市政污泥中金属资源化程度低的问题,以富含铝的市政污泥为原料制备得到污泥基镁铝层状双氧化物/生物炭 (MgAl LDO@biochar) 复合材料。结合结构表征,静态吸附和动态吸附实验系统探讨LDO@biochar的吸附性能和吸附机理。结果表明,铝镁摩尔比为1∶2时,所制备LDO@biochar的比表面积和晶粒尺寸最大,其对模式污染物刚果红的吸附容量最高。在吸附过程中LDO通过“记忆效应”重构层状双氢氧化物 (LDH) 结构从而对阴离子产生吸附作用,biochar的共轭碳环和含氧官能团也可以作为污染物结合位点。污染物与吸附剂之间可通过离子交换、π-π共轭、氢键作用和静电吸引等方式结合。与阳离子型染料罗丹明B (11.30 mg·g−1) 和具有单一共轭环结构的磺胺 (20.25 mg·g−1) 相比,阴离子型染料酸性橙II (181.30 mg·g−1) 和具有多共轭环结构的四环素 (39.49 mg·g−1) 的平衡吸附容量更大,而具有多共轭环结构的阴离子型染料刚果红的平衡吸附容量高达477.46 mg·g−1。本研究结果可为综合利用市政污泥制备高附加值环境功能材料提供参考。  相似文献   

18.
刘前进  刘立凡 《环境工程学报》2021,15(10):3400-3409
通过调控SBR的进水COD、曝气量和污泥沉淀时间,对储存于苯酚溶液后的好氧颗粒污泥进行了活性恢复研究,为好氧颗粒污泥活性恢复方法的选择提供参考。结果表明,室温下在60 mg·L−1苯酚溶液中储存150 d的好氧颗粒污泥,经过28 d的培养即可恢复其结构完整性和微生物活性。在活性恢复期间中,好氧颗粒污泥经历了破碎到重塑的演变过程。恢复后的好氧颗粒污泥具有良好的沉降性能,微生物量较大且活性较高,SVI30和SVI5分别为26.1 mL·g−1和27.6 mL·g−1,MLSS和MLVSS分别为16 903 mg·L−1和12 001 mg·L−1,MLVSS/MLSS为0.71,DHA为71.36 μg·(g·h)−1。好氧颗粒污泥的EPS组分在恢复期间不断发生改变,代表酪氨酸/色氨酸类蛋白和芳香族蛋白类物质的荧光强度随颗粒污泥的活性恢复逐渐增强。恢复后的好氧颗粒污泥对COD、TP和TN的去除率分别为97.34%、89.88%和64.37%。  相似文献   

19.
餐厨废水是一类高油、高盐、高氮等较为复杂的废水,在传统厌氧处理中面临污泥漂浮流失、有机负荷低及COD去除效果差等问题。通过构建中试规模厌氧膜生物反应器(anaerobic membrane reactor, AnMBR)处理餐厨废水,考察了3个运行阶段(污泥驯化阶段、容积负荷(volume loading rate, VLR)提升阶段和污泥停留时间(sludge retention time, SRT)缩短阶段)的厌氧消化性能、稳定性能、污泥性质和膜性能变化。结果表明,在污泥驯化阶段,低负荷(1.5 kg·(m3·d)−1)污泥驯化方式能够实现AnMBR的快速启动,甲烷产率由227 mL·g−1 (以COD计)迅速提升至267 mL·g−1,COD去除率达到99%。在VLR提升阶段,当负荷由3.0 kg·(m3·d)−1逐渐增加至12.0 kg·(m3·d)−1时,甲烷产率由283 mL·g−1升高并稳定至335 mL·g−1左右,COD去除率达到98.5%。然而此阶段污泥浓度由13.39 g·L−1迅速升高至45.59 g·L−1,从而导致膜污染加剧,平均膜通量下降速率由0.53 L·(m2·h·d)−1增至0.78 L·(m2·h·d)−1。在SRT缩短阶段(由100 d缩短至40 d),尽管排泥量由0.4 L·d−1增加至1 L·d−1,甲烷产率并没有受到明显影响,仍稳定在335 mL·g−1左右,COD去除率达到98.9%。此外,缩短SRT增大了排泥量,反应器内污泥浓度由45.59 g·L−1逐渐降低至45.27 g·L−1,缓解了膜污染,膜通量下降速率减缓到0.42 L·(m2·h·d)−1。在整个运行阶段,AnMBR对毒性物质氨氮具有良好的耐受能力,尽管体系内氨氮质量浓度高达2 600 mg·L−1,VFA/ALK始终低于0.04,表明AnMBR不仅对外界环境变化有着较好的缓冲能力,而且对消化体系的内源性抑制因素也有着良好的耐受能力。综上,AnMBR在处理餐厨废水时表现了良好的处理性能和稳定性能。  相似文献   

20.
为减少电解锰渣中主要污染物锰离子和氨氮含量,降低其对环境的污染,采用水洗联合固化法处理电解锰渣,通过改变水渣比、洗涤次数、搅拌时间,固化剂添加比例,观察锰渣水洗及固化过程中锰离子、氨氮的质量浓度变化并确定最佳水洗固化条件。研究表明,水渣比为2,洗涤2次,搅拌时间30 min为最佳水洗条件,此时锰渣浸出液Mn2+、NH3-N的质量浓度分别为106.65和40.05 mg·L−1;向水洗后锰渣中添加0.15%的Na3PO4、1.00%的生石灰,0.75%的水泥和0.50%的粉煤灰为最佳固化剂添加比例,此时锰渣浸出液Mn2+、NH3-N的质量浓度分别为0.141和1.260 μg·L−1,满足污水综合排放标准。本研究结果表明,对水洗后的锰渣进行固化处理,可以有效降低浸出液中Mn2+和NH3-N质量浓度,可为锰渣无害化处理提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号