首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
人工快速渗滤系统对污染物的去除机制   总被引:9,自引:0,他引:9  
人工快速渗滤系统(CRI)是在传统的污水快速渗滤处理系统(RI)的基础上发展起来的一种新型的污水土地处理技术.通过对CRI的模拟,揭示了非生物机制与生物机制对有机物、营养元素的降解机制.结果表明,CRI对污水中污染物的去除是在非生物机制与生物机制协同作用下完成的.对污水中的有机物和氮的降解以生物机制为主、非生物机制为辅;对磷的降解则以非生物机制为主、生物机制为辅.生物机制对有机物、氮的去除占70%以上,非生物机制对磷的去除占61.9%.系统中氮转化以硝化效果为主,反硝化效果较弱.  相似文献   

2.
采用移动床生物膜反应器,通过一段式短程硝化-厌氧氨氧化耦合短程反硝化工艺处理主流厌氧消化出水。在溶解氧浓度(DO)维持在(1.45 ± 0.15)mg·L−1的条件下,出水TN低至(10.7 ± 2.4)mg·L−1${{\rm{NH}}_4^{+}} $-N转化率达到(86.8 ± 4.5)%,平均TN去除率为(78.9 ± 4.9)% (最高达84.0%)、TN去除负荷为0.38 kg·(m3·d)−1。分析氮的去除路径表明,低浓度有机物诱导反硝化菌主要发生短程反硝化,耦合系统脱氮贡献主要来源于厌氧氨氧化。在载体上,生物膜实现了厌氧氨氧化菌的有效富集,其中菌的活性为873.9 mg·(g·d)−1;而氨氧化细菌主要存在于絮体污泥中,占总菌比例为(38.7 ± 5.9)%;亚硝酸盐氧化细菌则仅占(7.8 ± 2.8)%,说明其受到一定程度抑制。本研究结果可为anammox在主流厌氧消化出水深度处理中的应用提供参考。  相似文献   

3.
针对目前生物工艺难以解决垃圾渗滤液深度脱氮的问题,探究了短程硝化反硝化-厌氧氨氧化-硫自养反硝化(两级自养)工艺处理高氨氮、低C/N比垃圾渗滤液的脱氮效果。结果表明, 当进水垃圾渗滤液中氨氮平均浓度为2 560 mg·L−1,COD值为4 000~5 000 mg·L−1时,经过短程硝化反硝化-厌氧氨氧化处理后,总氮去除负荷可达1.19 kg·(m3·d)−1、总氮去除率可达93.1%(出水TN=176.3 mg·L−1)、COD去除率可达52.2%。但是,厌氧氨氧化反应器出水中${\rm{NO}}_x^{-} $-N浓度为154.5 mg·L−1,仍未达到我国生活垃圾填埋场垃圾渗滤液处理排放标准(TN≤40 mg·L−1)。在厌氧氨氧化反应器之后串联硫自养反硝化,整体工艺最终出水${\rm{NH}}_4^{+} $-N、${\rm{NO}}_2^{-} $-N、${\rm{NO}}_3^{-} $-N平均浓度分别为1.9、0.6、9.7 mg·L−1,TN≤15 mg·L−1,进水总氮去除率为99.5%。在短程硝化反硝化-厌氧氨氧化-硫自养反硝化两级自养深度脱氮反应系统中实现了垃圾渗滤液深度脱氮。  相似文献   

4.
生物脱氮除磷新工艺的研究进展   总被引:13,自引:0,他引:13  
传统的脱氮除磷工艺存在许多不足之处,经济、高效、低耗的可持续脱氮除磷工艺已成为污水处理的发展方向。在分析中,介绍了运用短程硝化反硝化、厌氧氨氧化、反硝化除磷理论的工艺:SHARON工艺、CANON工艺、ANAMMOX工艺、SHARON与ANAMMOX联合工艺、DEPHANOX工艺、BCFS工艺的机理和研究进展。  相似文献   

5.
传统的脱氮除磷工艺存在许多不足之处 ,经济、高效、低耗的可持续脱氮除磷工艺已成为污水处理的发展方向。在分析中 ,介绍了运用短程硝化反硝化、厌氧氨氧化、反硝化除磷理论的工艺 :SHARON工艺、CANON工艺、ANAMMOX工艺、SHARON与ANAMMOX联合工艺、DEPHANOX工艺、BCFS○R工艺的机理和研究进展  相似文献   

6.
自养脱氮工艺中同时存在亚硝酸化、硝酸化、厌氧氨氧化和反硝化4个过程,而有机物增加了自养脱氮工艺4个过程的脱氮复杂性,但也增加了更多的可能性。综述了有机物对亚硝酸化、硝酸化、厌氧氨氧化和反硝化的影响,整理了同步亚硝化/厌氧氨氧化/反硝化(SNAD)工艺和反硝化氨氧化(DEAMOX)工艺的最新研究进展。  相似文献   

7.
针对低氨氮废水单级自养脱氮工艺(SNAP)系统的构建需要接种特殊种源且工程应用复杂的问题,采用生物亲和性好的天然椰丝纤维为填料,开展了低氨氮废水SNAP系统自然挂膜构建实验,考察了进水COD/TN对系统脱氮效能及脱氮路径的影响。结果表明:在温度为(30±1) ℃、进水氮负荷为0.1 kg·(m3·d)−1时,采用自然挂膜以及进水${\rm{NH}}_4^{+} $-N质量浓度梯度递减(由(100±3) mg·L−1降至(50±2) mg·L−1)的运行方式,经过85 d的运行,初步构建出低氨氮废水SNAP系统;该系统${\rm{NH}}_4^{+} $-N和TN去除率分别为94.58%和70.07%;系统脱氮功能菌属主要有Nitrosomonas、Candidatus Brocadia。此外,进水COD/TN对系统脱氮效能及脱氮路径影响显著。当进水COD/TN分别为0、0.2、0.5、1、2时,系统TN平均去除率分别为70.07%、72.09%、75.18%、82.19%、62.19%;对于低氨氮废水,当COD/TN≤0.2时,系统主要脱氮路径为厌氧氨氧化;当COD/TN为0.5~1.5时,系统脱氮路径以短程硝化反硝化为主,厌氧氨氧化为辅;当COD/TN≥2 时,系统通过短程硝化反硝化、厌氧氨氧化路径脱氮能力进一步降低。  相似文献   

8.
通过接种厌氧氨氧化菌(Candidatus Brocadia)与部分反硝化菌(Thauera)形成厌氧氨氧化与部分反硝化耦合处理模拟城镇污水中的氨氮(NH_4~+-N)与硝氮(NO3--N),考察不同NO3--N/NH_4~+-N比对耦合系统脱氮性能的影响及最佳NO3--N/NH_4~+-N比下耦合系统的稳定性和脱氮的途径。结果表明:在COD/NO3--N为2.5、NH_4~+-N浓度为20~40 mg·L~(-1)的条件下,NO3--N/NH_4~+-N比在0.8~1.6的范围内均可实现部分反硝化与厌氧氨氧化协同脱氮,且当NO3--N/NH_4~+-N比为1.2时,耦合效果最佳,对应的NH_4~+-N、NO3--N及总氮(TN)去除率分别为92.85%、99.68%和96.42%;厌氧氨氧化菌在耦合系统中的活性稳定在(4.62±0.44)mg·(g·h)-1(以VSS计),且与反硝化菌存在协同竞争关系,进水NO3--N的84.3%由厌氧氨氧化途径去除,15.7%由异养反硝化途径去除。  相似文献   

9.
基于改良型双污泥除磷脱氮工艺在不同气压条件下稳态运行数据,探讨了海拔分别为400 (96 kPa)、2 800(72 kPa)和3 300 m(65 kPa)下的工艺运行效能。结果表明,当气压从96 kPa降低至65 kPa,COD的去除率从87.45%提高至90.94%,低气压促进了聚磷菌厌氧释磷过程中胞内碳源的合成,有效提高了好氧吸磷效率,系统总磷去除效率从84.23%提升至90.44%。随气压降低,氨氧化菌的丰度和活性降低,低氧池硝化功能受限,进而限制了同步硝化反硝化作用,系统脱氮量减少,脱氮率从73.37%降低至69.89%。工艺各单元水质变化和物料衡算分析结果表明,各气压条件下改良型双污泥工艺磷主要通过好氧吸磷和反硝化聚磷过程去除,氮主要通过厌氧池的反硝化和低氧池的同步硝化反硝化过程去除。此外,随着气压的降低,曝气池中微生物的同化脱氮功能增强。本文结果为改良型双污泥工艺在高海拔地区市政污水处理中的应用提供了一定的理论参考。  相似文献   

10.
周可  潘元  田天  王进 《环境工程学报》2021,15(8):2789-2800
铁自养反硝化技术在低碳氮比废水处理中具有安全性高、成本低廉等优势,但目前对其反硝化过程机理,特别是其中生物与化学作用的关系仍缺乏清晰认识。为此,以铁自养反硝化系统为研究对象,结合反应动力学,分析不同阶段活性污泥自养反硝化过程中生物和化学作用变化规律,以期探究该过程的脱氮机制。结果表明,铁自养反硝化过程脱氮效率和速率分别可达(87.0±1.8)%和0.12 kg·(m3·d)−1。铁自养条件下,未经驯化的活性污泥在反硝化过程中,Fe(Ⅱ)氧化由化学作用主导,$ {{\rm{NO}}_{\rm{2}}^{\rm{ - }}}$-N还原由生物作用主导,且生物过程由自养反硝化和以胞外聚合物为底物的异养反硝化共同作用;经驯化培养,Fe(II)氧化的生物作用增强,与${ {\rm{NO}}_{\rm{2}}^{\rm{ - }}}$-N还原均由生物作用主导。以上研究结果可为铁自养反硝化脱氮技术的发展提供参考。  相似文献   

11.
为探究全程自养脱氮工艺(completely autotrophic nitrogen removal over nitrite,CANON)启动和高负荷运行过程中微生物响应特性并确定有效的调控策略,基于已稳定运行的厌氧氨氧化(anaerobic ammonium oxidation, anammox)系统,通过调控DO、pH和游离氨,并采取逐渐降低$ {{\rm{N}}{{\rm{O}}^ -_2}} $-N和提升${ {\rm{N}}{{\rm{H}}^ + _4}}$-N的质量浓度的方式将其转为CANON工艺。结果表明:以10~20 mg·L−1的游离氨为参考因素,调控DO为0.2~0.5 mg·L−1、pH为7.0~7.2,可有效抑制亚硝酸盐氧化菌增殖,稳步提升氨氧化速率和氮去除速率(分别约为0.98 kg·(m3·d)−1和1.67 kg·(m3·d)−1),顺利启动CANON工艺;anammox和亚硝化途径对${ {\rm{N}}{{\rm{H}}^ + _4}}$-N的转化比最终稳定在0.73左右;高质量浓度(>1 800 mg·L−1)的氨氮会促使anammox菌基因丰度增加,而使氨氧化菌基因丰度降低;anammox菌在CANON启动前期和高负荷条件下分别以Candidatus KueneniaCandidatus Brocadia为优势菌属,而SM1A02作为可能的anammox菌属同氨氧化菌属Nitrosomona在启动过程中始终为优势菌属。  相似文献   

12.
阐述了污水低氧脱氮的基本原理,即抑制或去除亚硝酸盐氧化菌(NOB),同时保留氨氧化菌(AOB),并保持其活性;探讨了污水低氧脱氮实现途径;详细介绍了几种典型的污水低氧脱氮工艺(短程硝化(SHARON)工艺、厌氧氨氧化(ANAMMOX)工艺、好氧反氨化(DEMON)工艺、低氧自养硝化反硝化(OLAND)工艺、甲烷营养型硝化反硝化工艺和亚硝酸盐型完全自养脱氮(CANNON)工艺)的应用研究进展;最后对污水低氧脱氮处理工艺的工程运用进行了展望.  相似文献   

13.
针对城镇污水在高标准除磷脱氮过程中碳源不足的问题,提出了基于多路径协同的AAOA除磷脱氮技术,探究了AAOA系统实现高标准除磷脱氮对进水C/N的要求,并对实际城镇污水处理进行了实验研究。结果表明:当进水C/N分别为6、7.5、9时,系统TN去除率分别为74.12%、84.90%、90.05%,TP去除率分别为48.29%、97.68%、98.50%;当进水C/N≥7.5时,系统可以实现高标准脱氮除磷。16S rRNA高通量测序结果表明:系统中脱氮除磷功能菌属主要有Aeromonas、Nitrospira、Aeromonas、Comamonadaceae_unclassified、Uliginosibacterium、Saccharibacteria_norank、Candidatus_Accumulibacter、Aeromonas、Pseudomonas、Dechloromonas,系统通过自养硝化、异养硝化、异养反硝化、反硝化聚磷、好氧反硝化等多条路径协同作用实现了高标准除磷脱氮。同时,采用AAOA系统处理城镇污水,当城镇污水进水C/N为7.5时,系统出水${\rm{NH}}_4^{+} $-N、TN和PO43--P平均质量浓度分别为0.40、3.57、0.21 mg·L−1,平均去除率分别达到98.76%、89.03%和95.55%,即无需外加碳源可实现城镇污水的高标准除磷脱氮。  相似文献   

14.
污水生物反硝化除磷可以克服传统生物脱氮除磷工艺碳源不足的缺点,利用硝酸盐代替氧气作为电子受体,同时进行脱氮除磷和有机物去除,实现“一碳两用”,但是低温会降低反硝化除磷效率。在低温(10±1) ℃条件下,利用序批式反应器(SBR)(90 min厌氧,330 min缺氧,1#(空白对照)和2#(投加介体)),投加氧化还原介体1,2-萘醌-4-磺酸盐(NQS),研究了反硝化除磷效率的变化。结果表明:相较于空白对照实验,投加介体NQS强化了污水低温生物反硝化除磷效果,总氮去除率从37.67%提高至51.47%,提高了1.37倍;总磷去除率从53.45%提高至96.50%,提高了1.81倍。此外,研究还发现介体NQS的投加促进了水中磷酸盐形成有机磷(Org-P)的过程,污泥中磷的主要形态是可溶性磷(SRP)和Org-P,最大含量分别为35.78 mg∙L−1和51.09 mg∙L−1;空白对照反应器污泥中磷的主要形态是SRP和Fe-P,最大含量分别为45.61 mg∙L−1和40.67 mg∙L−1。以上研究结果可为低温条件下提高污水生物反硝化除磷效果提供参考。  相似文献   

15.
为探究厌氧铁氨氧化(Feammox)污水处理效能及稳定性,考察了铁氧化物类型、硫限制和低温(4℃)对Feammox脱氮除磷的影响,并分析了污泥与微生物特性。结果表明,添加硫酸盐和水铁矿的实验组具有较好的脱氮除磷效果,氨氮和总磷去除率分别超过84%和98%,各实验组氨氧化产物均以硝态氮/亚硝态氮为主,并通过反硝化去除。微生物分析表明,添加硫酸盐和水铁矿、硫酸盐和磁铁矿的实验组中具有较高丰度的氨氧化细菌,硫限制和低温条件下则具有较高丰度的异养反硝化细菌。综上,Feammox具有较稳定的脱氮除磷效果,硫限制和磁铁矿作为铁源不影响其氨氧化效率,但低温明显降低氨氧化效率。  相似文献   

16.
活性污泥对氮的去除主要通过硝化和反硝化作用来进行。温度、pH、溶解氧浓度、污泥龄、毒性物质、污水性质(有机物含量、氮浓度)都会对系统脱氮能力产生影响。一般较高的pH、延长污泥龄、较低的溶解氧浓度和较低的有机碳浓度均能提高系统的硝化能力,反硝化/硝化系统具有投资省、脱氮效率高等优点。除甲醇外,其它一些工业废弃物也可作为促进反硝化作用的碳源。由于厌氧环境有利于反硝化作用,所以厌氧/好氧(A/O)法和间歇式活性污泥法(SBR)具有极高的脱氮效率。  相似文献   

17.
利用氮素计量关系和批式实验研究了SBR系统中基于短程硝化的单级自养脱氮特性和脱氮途径。结果表明,SBR系统获得良好脱氮效果,TN最高去除负荷和去除速率分别达0.49 kg N/(m3·d)和0.20 kg N/(kg VSS·d);系统中82%的氨氮转化成气体脱除,10%的氨氮转化成硝酸盐氮。批式实验结果表明,SBR系统中的污泥同时具有厌氧氨氧化、亚硝酸盐氧化和自养反硝化活性,三者的反应速率分别为0.12 kg NH4+-N/(kg VSS·d)、0.04 kg NO2--N/(kg VSS·d)和0.03 kg NO2--N/(kg VSS·d)。综上,SBR系统中氮的脱除是短程硝化、厌氧氨氧化和反硝化共同作用的结果,产生的硝酸盐是厌氧氨氧化和硝化作用所致。  相似文献   

18.
为探究部分硝化/厌氧氨氧化(PN/A)工艺对城市污水厌氧处理工艺出水的强化脱氮效能,以厌氧膜生物反应器(AnMBR)出水为研究对象,比较了不同水力停留时间(HRT)下(10、8、6和4 h),PN/A系统的脱氮效率、代谢路径及微生物群落及结构特征。结果表明:随着HRT的逐渐降低,PN/A系统的脱氮效率呈现先升高后降低的趋势;HRT为6 h时脱氮效率达到最高,为81.3%;在稳定运行期间,出水TN和COD分别低至(11.97±2.44 mg)·L−1和(9.98±3.42) mg·L−1;随着HRT缩短至4 h,anammox菌丰度随着氮负荷升高而有所提升,但水力冲刷过强破坏污泥形态等原因导致了系统脱氮效率的下降。通过对系统内COD与氮素转化的核算可知,厌氧氨氧化段内发生的部分反硝化(PD)过程是使系统脱氮效率明显提升的根本原因,而HRT为6 h时大约19%的${{\rm{NO}}_2^{-}} $-N由PD提供。本研究证明了PN/A系统作为城市污水主流脱氮工艺的可行性,可为该系统的应用提供参考。  相似文献   

19.
有机物浓度对厌氧氨氧化脱氮性能影响试验研究   总被引:6,自引:2,他引:6  
通过间歇试验和连续试验研究了不同有机物浓度对厌氧氨氧化活性及脱氮性能的影响。间歇试验结果表明:自养条件下厌氧氨氧化菌的最大比反应速率为0.189 kg NH+4-N/(kg VSS·d);当氨氮和亚硝酸盐氮浓度为80 mg/L时,有机物的添加降低了厌氧氨氧化速率,当有机物浓度超过70 mg/L时,厌氧氨氧化菌的最大比反应速率降低到0.05 kg NH+4-N/(kg VSS·d)以下,是反硝化菌与厌氧氨氧化菌竞争亚硝酸盐产生了可逆抑制的结果。连续试验结果表明,高氮低碳源有机环境下厌氧氨氧化能稳定运行,并且比自养系统中总氮的去除率有所提高,当COD值为50 mg/L时,总氮去除率最大,平均值达96.59%,是反硝化菌和厌氧氨氧化菌共同脱氮的结果;当有机物浓度过高时,ANAMMOX对TN去除贡献率持续降低,反硝化不断得到强化,厌氧氨氧化运行不稳定。  相似文献   

20.
采用连续运行式生物膜脱氮蓄磷-碳源调控回收磷系统(biofilm bio-nutrient removal carbon source regulated phosphorus removal,BBNR-CPR)处理低C/N比(3.4~6.9)模拟生活污水。通过反应器内生物膜来蓄积废水中的磷,同时采用周期性投加高浓度的外加碳源,诱导释放生物膜内蓄积的磷且对其进行回收。在此基础上,通过增设后置缺氧段,同时增加好氧内循环量、提高磷回收阶段补充碳源浓度等方式,强化BBNR-CPR系统的运行,以期实现低温下(<15 ℃)系统的同步脱氮蓄磷/回收磷的目标。结果表明,在低温下引入后置缺氧段,可节省27%的曝气能耗,并能维持该系统脱氮除磷性能的稳定性。在进水${{\rm{NH}}_4^ +} $-N、TP浓度分别为50 mg·L−1、15 mg·L−1的条件下,该系统对${{\rm{NH}}_4^ +} $-N、TN和TP的平均去除率分别达到了89.12%、82.14%和89.24%。在单个生物蓄磷-磷回收周期(7 d)内,随着系统运行时间的延长(第3~6天),生物膜内反硝化聚磷菌体内的PHA的不断消耗,系统的缺氧吸磷速率仍可维持稳定,第3和6天分别为7.51 mg·(L·h)−1和7.83 mg·(L·h)−1)。在该运行方式下,系统后置缺氧段每去除1.00 mg ${{\rm{NO}}_3^ - }$-N可耦合去除0.76 mg TP;且该阶段限制反硝化除磷的主要因素是进水氨氮转化时产生的硝态氮(反硝化吸磷电子受体)的浓度。通过对生物膜样本进行16S rRNA高通量测序分析,发现系统内的优势菌群为Candidatus Competibacter、Candidatus Nitrotoga、Phaeodactylibacter、Thiothrix和Dechloromonas。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号