首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Experimental trampling trials using a standardized methodology were undertaken in 10 replicate blocks in three vegetation types in an urban reserve in the subtropics of Australia. In each block different intensities of trampling (controls, 10, 25, 50, 100, 150, 200, 250, 300, 400 and 500 passes) were applied, and vegetation parameters were measured pre-trampling, immediately after trampling and 2 weeks later. A Fern understorey had low resistance to trampling intensity, with reductions in relative vegetation height and cover with as few as 10 passes. A Tussock grass understorey showed moderate resistance with reduction in height at 25 passes and cover at 50 passes. A Disturbed grassland dominated by lawn grasses had the highest resistance, with reductions in vegetation height at 100 passes, but cover was affected by as few as 10 passes. The resistance indices (number of passes required to reduce vegetation cover by 50%) of three vegetation types were 210, 360 and 860 passes, respectively. When these values were compared with those for 52 other vegetation types considerable variation was found within life forms, climatic zones and vegetation types indicating that the response of a specific community may not always be predictable.  相似文献   

2.
To determine the status of the vegetation of ski slopes in northeastern-central Honshu, Japan, 94 plots (2×2 m) were set up on five ski areas (101–520 m elevation) which were established between 1945 and 1985 by forest clear-cutting, land modification, and seeding. Six vegetation types were recognized: five grasslands dominated byDigitaria adscendens, Miscanthus sinensis, Zoysia japonica, Festuca rubra, andPteridium aquilinum var.latiusculum, respectively, and bare areas of very low to no vegetation cover. Of the dominant species,F. rubra is the only introduced species; it does not, however, appear to persist. After the introduced grassland declinesM. sinensis or annual grasslands develop. Native plants, especially woody species, can establish inM. sinensis grassland but do not establish in the other grasslands. It is concluded that the introduction of exotic species is inappropriate to maintain ski slope vegetation, and the development ofM. sinensis grassland is desirable to promote natural revegetation.  相似文献   

3.
The Australian Alps, which are of high conservation value, are popular summer bushwalking destinations. Experimental trampling trials using a standardized methodology were conducted to determine the resistance and resilience of the two common vegetation types: tall alpine herbfield and subalpine grasslands. Vegetation parameters were measured in lanes subject to control (no trampling), 30, 100, 200, 500 and 700 passes at five sites prior to trampling, immediately post trampling, 2 weeks, 6 weeks and 1 year post trampling. Vegetation height, cover of graminoids and herbs, as well as net species richness all declined with trampling, while litter cover increased. Thresholds for damage varied between the two communities and among the different vegetation parameters. The resistance indices for the two communities (number of passes resulting in 50% reduction in vegetation cover), however, were similar at around 440–450 passes indicating that these two communities are among the most resistant of the 19 alpine–subalpine communities that have been tested around the world, but only of moderate resistance compared to non-alpine communities. The two communities showed limited recovery with damage still evident 1 year post trampling. This indicates that they have only moderate tolerance to damage due to moderate resistance, but low resilience.  相似文献   

4.
Snowmobile use in Yellowstone National Park has been shown to impact air quality, with implications for the safety and welfare of Park staff and other Park resource values. Localized impacts have been documented at several high-use sites in the Park, but the broader spatial variability of snowmobile emissions and air quality was not understood. Measurements of 87 volatile organic compounds (VOCs) were made for ambient air sampled across the Park and West Yellowstone, Montana, during 2 days of the 2002–2003 winter use season, 1 year before the implementation of a new snowmobile policy. The data were compared with similar data from pristine West Coast sites at similar latitudes. Backward trajectories of local air masses, alkyl nitrate-parent alkane ratios, and atmospheric soundings were used to identify the VOC sources and assess their impact. Different oversnow vehicle types used in the Park were sampled to determine their relative influence on air mass pollutant composition. VOCs were of local origin and demonstrated strong spatiotemporal variability that is primarily influenced by levels of snowmobile traffic on given road segments at different times of day. High levels of snowmobile traffic in and around West Yellowstone produced consistently high levels of benzene, toluene, and carbon monoxide.  相似文献   

5.
Experimental trials were undertaken over four years to assess the impact of recreational trampling in undisturbed alpine and sub-alpine vegetation communities in the Western Arthur Range, western Tasmania. Data on 'pad' formation due to human trampling were collected using vegetation cover assessments, biomass estimates and detailed cross-sectional surface profiles. In sub-alpine buttongrass and alpine herbfield, prolonged and sustained damage may occur after 100 passes by walkers. The environmental threshold of the flat alpine herbfield site was breached after 200 passes. Plant morphology was one determinant of resistance and resilience, with upright woody shrubs and tall tussock graminoids most vulnerable to sustained trampling damage. Cushions are susceptible to trampling impacts at 500 passes. Loss of vegetation cover peaks 6-12 months after trampling. Our results show that pads formed with as few as 30-100 passes per annum and tracks form at between 100 and 500 passes per annum. Two years after the cessation of trampling, there is some small recovery in vegetation cover after 30 and 100 passes per annum applied for three years, but no evidence of recovery at the 500 pass treatments. The low trampling threshold and slow recovery rates in western Tasmania suggest that concentrating walkers on a minimal number of sites may be the best management option for these untracked alpine and sub-alpine environments.  相似文献   

6.
Abstract: A study was conducted to determine the effects of three land covers (sunn hemp –Crotalaria juncea, sudex, a sorghum‐sudangrass hybrid –Sorghum bicolor x S. bicolor var. sudanese, and common oats –Avena sativa) planted as vegetative filter strips on the reduction of sediment and nutrient loading of surface runoff within the Kaika‐Waialua watershed on the island of Oahu, Hawaii. Runoff samples were collected and analyzed for total suspended solids (TSS), total dissolved solids (TDS), phosphorous, and three forms of nitrogen (nitrate, ammonium, total nitrogen). Study results show that during seven out of 10 runoff events, the three cover crop treatments significantly reduced TSS as compared to the fallow treatment. Average removal efficiencies were 85, 77, and 73% for oats, sunn hemp, and sudex, respectively, as compared to the fallow treatment. Nutrient concentrations were low with phosphorous concentrations, lower than 1 (μg/ml) for all treatments, and total nitrogen (TN) concentrations below 7 (μg/ml) except in the sunn hemp treatment, where TN concentrations were less than 10 (μg/ml). Results of analysis of TDS showed that the cover crop treatments did not decrease dissolved solids concentrations in comparison with the fallow treatment. Analysis of nutrient concentrations in runoff samples did not detect any significant decreases in phosphorous, nitrogen, ammonium, or TN concentrations in comparison to the fallow treatment. However, a significant increase in TN concentrations in the sunn hemp treatment was detected and showed the nitrogen fixing capacity of sunn hemp. No treatment effects on runoff volume were detected, and runoff volumes were directly correlated with rainfall amounts showing no crops significantly impacted soil infiltration rates. These results were attributed to extremely low soil hydraulic conductivities (0.0001‐7 cm/day at the soil surface, 15 and 30 cm below the soil surface). This study showed that cover crops planted as vegetative filters can effectively reduce sediment loads coming from idle and fallow fields on moderately steep volcanically derived highly weathered soils.  相似文献   

7.
Abstract: Natural forests in southern China have been severely logged due to high human demand for timber, food, and fuels during the past century, but are recovering in the past decade. The objective of this study was to investigate how vegetation cover changes in composition and structure affected the water budgets of a 9.6‐km2 Dakeng watershed located in a humid subtropical mountainous region in southern China. We analyzed 27 years (i.e., 1967‐1993) of streamflow and climate data and associated vegetation cover change in the watershed. Land use/land cover census and Normalized Difference of Vegetation Index (NDVI) data derived from remote sensing were used to construct historic land cover change patterns. We found that over the period of record, annual streamflow (Q) and runoff/precipitation ratio did not change significantly, nor did the climatic variables, including air temperature, Hamon’s potential evapotranspiration (ET), pan evaporation, sunshine hours, and radiation. However, annual ET estimated as the differences between P and Q showed a statistically significant increasing trend. Overall, the NDVI of the watershed had a significant increasing trend in the peak spring growing season. This study concluded that watershed ecosystem ET increased as the vegetation cover shifted from low stock forests to shrub and grasslands that had higher ET rates. A conceptual model was developed for the study watershed to describe the vegetation cover‐streamflow relationships during a 50‐year time frame. This paper highlighted the importance of eco‐physiologically based studies in understanding transitory, nonstationary effects of deforestation or forestation on watershed water balances.  相似文献   

8.
Impacts of recreation, especially of vehicles and walkers, were studied in eight tropical or subtropical public sites in Queensland. In each site, plant species number, vegetation cover, plant height, and species cover and frequency in untrampled, slightly trampled, moderately trampled, and heavily trampled areas were counted or measured. Soil penetration resistance and soil organic matter were also recorded. In two of these eight sites, plant cover, height, leaf length, leaf width, and leaf thickness of each species were measured. Some species of grass such asCynodon dactylon were present in areas subject to all degrees of trampling impact and some tussock species, particularlyEragrostis tenuifolia andSporobolus elongatus, were only present in trampled areas. Woody plants occurred only on untrampled areas. The number of species and all the vegetative measurements mentioned above were reduced as wear increased. Plant height was reduced dramatically by even light trampling. Tall plants appeared to be more sensitive to trampling than short plants. No clear relationship between soil organic matter content and trampling intensity was found.  相似文献   

9.
Schinus terebinthifolius, native to South America, has become an aggressive woody weed in southern Florida, displacing native vegetation as well as rapidly invading disturbed sites. Studies to evaluate the effectiveness of fire as a management option for controllingSchinus on abandoned farmland in Everglades National Park, known as the “Hole-in-the-Donut,” began in 1979. Study plots were established to monitor any change(s) in herbaceous cover and in numbers and size ofSchinus stems. Except in the control plot (which was not burned), each site was burned as often as fuel conditions permitted (usually once every one or two years), through 1985. Results indicated that both the number and density ofSchinus stems increased over the course of the study. While plots that burned showed a reduction in the rate ofSchinus invasion, invasion still progressed rapidly with or without the occurrence of fire. The increase inSchinus stem density from 1980 to 1985 was highly significant in all transects except one. Herbaceous cover showed no clear trends relative to burning.  相似文献   

10.
Mountain biking is an increasingly popular, but sometimes controversial, activity in protected areas. Limited research on its impacts, including studies comparing biking with hiking, contributes to the challenges for mangers in assessing its appropriateness. The impacts of mountain bike riding off trail were compared to those of hiking on subalpine grassland in Australia using a modification of a common trampling experimental methodology. Vegetation and soil parameters were measured immediately and two weeks after different intensities of mountain biking (none, 25, 75, 200 and 500 passes across slope, 200 pass up and down slope) and hiking (200 and 500 passes across slope). There were reductions in vegetation height, cover and species richness, as well as changes in species composition and increases in litter and soil compaction with riding. Riding up and down a moderate slope had a greater impact than riding across the slope. Hiking also affected vegetation height, cover and composition. Mountain biking caused more damage than hiking but only at high use (500 passes). Further research including other ecosystems, topography, styles of riding, and weather conditions are required, but under the conditions tested here, hiking and mountain biking appear to be similar in their environmental impacts.  相似文献   

11.
Controlled trampling was conducted to investigate the trampling resistance of contrasting high fertility basaltic and low fertility rhyolitic soils and their associated highland tropical rainforest vegetation in north east Australia's Wet Tropics. Although this approach has been taken in numerous studies of trampling in a variety of ecosystem types (temperate and subtropical forest, alpine shrubland, coral reef and seagrass beds), the experimental method does not appear to have been previously applied in a tropical rainforest context. Ground vegetation cover and soil penetration resistance demonstrated variable responses to trampling. Trampling, most noticeably after 200 and 500 passes reduced organic litter cover. Bulk density increased with trampling intensity, particularly on basalt soils as rhyolite soils appeared somewhat resistant to the impacts of trampling. The permeability of the basalt and rhyolite soils decreased markedly with increased trampling intensity, even after only 75 passes. These findings suggest physical and hydrological changes may occur rapidly in tropical rainforest soils following low levels of trampling, particularly on basalt soils.  相似文献   

12.
The effects of grazing by feral horses on vegetation and dune topography at Assateague Island National Seashore were investigated using color-infrared imagery, lidar surveys, and field measurements. Five pairs of fenced and unfenced plots (300 m2) established in 1993 on sand flats and small dunes with similar elevation, topography, and vegetation cover were used for this study. Color-infrared imagery from 1998 and field measurements from 2001 indicated that there was a significant difference in vegetation cover between the fenced and unfenced plot-pairs over the study period. Fenced plots contained a higher percentage of vegetation cover that was dominated by American beachgrass (Ammophila breviligulata). Lidar surveys from 1997, 1999, and 2000 showed that there were significant differences in elevation and topography between fenced and unfenced plot-pairs. Fenced plots were, on average, 0.63 m higher than unfenced plots, whereas unfenced plots had generally decreased in elevation after establishment in 1993. Results demonstrate that feral horse grazing has had a significant impact on dune formation and has contributed to the erosion of dunes at Assateague Island. The findings suggest that unless the size of the feral horse population is reduced, grazing will continue to foster unnaturally high rates of dune erosion into the future. In order to maintain the natural processes that historically occurred on barrier islands, much larger fenced exclosures would be required to prevent horse grazing.  相似文献   

13.
ABSTRACT: The herbicide glyphosate was applied to portions of two watersheds in southwestern British Columbia to kill vegetation that was competing with Pseudotsuga menziesii (Douglas-fir) plantations. This application had little significant effect on streamwater chemistry (K+, Na2+, Mg2+, Ca2+, Cl-, NOs3-, NH4+, PO43-, SO4=, and SiO2 concentrations, electrical conductivity, and pH) when vegetation cover in a watershed was reduced by 4%, but had significant (P>0.05) effects, which lasted for at least five years, when cover was reduced by 43%. In this case, most parameters increased in value following the application, with K+ and Mg2+ concentrations and pH values exhibiting the most prolonged increases and NO3- concentrations exhibiting the greatest percentage increases. Sulphate and dissolved SiO2 concentrations decreased following the application. Streamwater chemical fluxes showed similar trends to concentrations except that changes in fluxes were less significant and no decreases were observed. Forest management induced losses of NO3-N in streamwater during the first five post-treatment years in the study area decreased in the order: herbicide application (approximately 40 kg/ha) < clearcutting and slashburning (approximately 20 kg/ha) < clearcutting (approximately 10 kg/ha). In watersheds similar to those of the study area, herbicide application is likely to have a greater impact on streamwater chemistry, in general, than would clearcutting or clearcutting followed by slashburning.  相似文献   

14.
Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis Beetle & Young) communities frequently are mowed in an attempt to increase perennial herbaceous vegetation. However, there is limited information as to whether expected benefits of mowing are realized when applied to Wyoming big sagebrush communities with intact understory vegetation. We compared vegetation and soil nutrient concentrations in mowed and undisturbed reference plots in Wyoming big sagebrush plant communities at eight sites for three years post-treatment. Mowing generally did not increase perennial herbaceous vegetation cover, density, or biomass production (P > 0.05). Annual forbs and exotic annual grasses were generally greater in the mowed compared to the reference treatment (P < 0.05). By the third year post-treatment annual forb and annual grass biomass production was more than nine and sevenfold higher in the mowed than reference treatment, respectively. Our results imply that the application of mowing treatments in Wyoming big sagebrush plant communities does not increase perennial herbaceous vegetation, but may increase the risk that exotic annual grasses will dominate the herbaceous vegetation. We suggest that mowing Wyoming big sagebrush communities with intact understories does not produce the expected benefits. However, the applicability of our results to Wyoming big sagebrush communities with greater sagebrush cover and/or degraded understories needs to be evaluated.  相似文献   

15.
The curve number (CN) method is used to calculate runoff in many hydrologic models, including the Soil and Water Assessment Tool (SWAT). The CN method does not account for the spatial distribution of land cover types, an important factor controlling runoff patterns. The objective of this study was to empirically derive CN values that reflect the strategic placement of native prairie vegetation (NPV) within row crop agricultural landscapes. CNs were derived using precipitation and runoff data from a seven‐year period for 14 small watersheds in Iowa. The watersheds were planted with varying amounts of NPV located in different watershed positions. The least squares and asymptotic least squares methods (LSM) were used to derive CNs using an initial abstraction coefficient (λ) of 0.2 and 0.05. The CNs were verified using leave‐one‐out cross‐validation and adjustment for antecedent moisture conditions (AMC) was tested. The asymptotic method produced CN values for watersheds with NPV treatment that were 8.9 and 14.7% lower than watersheds with 100% row crop at λ = 0.2 and λ = 0.05, respectively. The derived CNs produced Nash‐Sutcliffe efficiency values ranging from 0.4 to 0.7 during validation. Our analyses show the CNs verified best for the asymptotic LSM, when using λ of 0.05 and adjusting for AMC. Further, comparison of derived CNs against an area weighted CN indicated that the placement of vegetation does impact the CN value. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

16.
A 4-year study was conducted to evaluate the consequences of human trampling on dryas and tussock tundra plant communities. Treatments of 25, 75, 200 and 500 trampling passes were applied in 0.75 m2 vegetation plots at a time of approximately peak seasonal biomass. Immediately after and 1 and 4 years after trampling, plots were evaluated on the basis of plant species cover, percent bare ground, vegetation height, and soil penetration resistance. One year after trampling, soils were collected for nitrogen analysis in highly disturbed and control plots. Immediately after trampling, 500 trampling passes resulted in approximately 50% cover loss in the dryas tundra and 70% cover loss in tussock tundra, but both communities showed a substantial capacity for regrowth. Plots where low and moderate levels of trampling were applied returned to pre-disturbance conditions by 4 years after trampling, but impact was still evident in plots subjected to high levels of disturbance. These results suggest that these tundra communities can tolerate moderate levels of hiking and camping provided that use is maintained below disturbance thresholds and that visitors employ appropriate minimum-impact techniques. By utilizing this information in a visitor education program combined with impact monitoring and management, it is possible to allow dispersed camping and still maintain these vegetation communities with a minimum of observable impact.  相似文献   

17.
Aibi Lake in north Xinjiang is a typical lake of the arid area, but with a peculiar wetland–arid area ecosystem. Due to the climate becoming drier and the disturbance of human activities, the eco-environment of Aibi Lake catchment has degraded. It was found in our study that there were spatial–temporal changes of vegetation cover, plant species, and soil physical and chemical properties in the catchment. In the upper section of alluvial–fluvial plains, the desertified steppe of Stipa and Artemisia spp. is developed with vegetation cover of some 50%. Haloxylon ammodendron desert occupies the lower section with vegetation cover of some 60%. In these regions with an intensive human disturbance, vegetation has degraded into herb vegetation of annual plant complexes. On the margins of the alluvial–fluvial fans, the lakeshore, and the surrounding regions where the river mouths join the lake, different azonal vegetation—Phragmites communis marsh, Phragmites communis meadow, and Tamarix shrubs—have developed with a vegetation cover of some 80%. On heavier, salinized land, succulent halophyte desert vegetation dominated by Halocnemum strobilaceum has formed with a fractional canopy cover of 10–15%. Haloxylon persicum, Aristida pennata, and other species with a vegetation cover of 30–50% grow in the sand desert zone on the periphery in the lake. In contrast with the 1950s, the vegetation cover around the lakebed and at the river deltas has slightly increased; however, the vegetation cover around the periphery of the lake has decreased and the plant species have still degraded. The surface soils on the windward area and the dried lakebed that have lost vegetation protection have become coarser, whereas the land on the leeward side of the lake has accumulated fine particles. In contrast with the 1980s, soil organic matter has declined markedly. The analyses of climatic data show that the number of days of drifting dust in Jinghe County and Bole City increased in the last 20 years. In the investigation, we found that intensively developed land, the bare lakebed, and abandoned cultivated land provided a great deal of material for drifting dust. In conclusion, we consider the eco-environmental degradation resulting from the inappropriate human activities and put forward recommendations for land-use adjustment and dust control.  相似文献   

18.
Effects of landfill gas on subtropical woody plants   总被引:2,自引:0,他引:2  
An account is given of the influence of landfill gas on tree growth in the field at Gin Drinkers' Bay (GDB) landfill, Hong Kong, and in the laboratory. Ten species (Acacia confusa, Albizzia lebbek, Aporusa chinensis, Bombax malabaricum, Castanopsis fissa, Liquidambar formosana, Litsea glutinosa, Machilus breviflora, Pinus elliottii, andTristania conferta), belonging to eight families, were transplanted to two sites, one with a high concentration of landfill gas in the cover soil (high-gas site, HGS) and the other with a relatively low concentration of gas (low-gas site, LGS). Apart from the gaseous composition, the general soil properties were similar. A strong negative correlation between tree growth and landfill gas concentration was observed. A laboratory study using the simulated landfill gas to fumigate seedlings of the above species showed that the adventitious root growth ofAporusa chinensis, Bombax malabaricum, Machilus breviflora, andTristania confera was stimulated by the gas, with shallow root systems being induced.Acacia confusa, Albizzia lebbek, andLitsea glutinosa were gas-tolerant, while root growth ofCastanopsis fissa, Liquidambar formosana, andPinus elliottii was inhibited. In most cases, shoot growth was not affected, exceptions beingBombax malabaricum, Liquidambar formosana, andTristania conferta, where stunted growth and/or reduced foliation was observed. A very high CO2 concentration in cover soil limits the depth of the root system. Trees with a shallow root system become very susceptible to water stress. The effects of low O2 concentration in soil are less important than the effects of high CO2 concentration.Acacia confusa, Albizzia lebbek, andTristania conferta are suited for growth on subtropical completed landfills mainly due to their gas tolerance and/or drought tolerance.  相似文献   

19.
Basic information on where nonnative plant species have successfully invaded is lacking. We assessed the vulnerability of 22 vegetation types (25 sets of four plots in nine study areas) to nonnative plant invasions in the north–central United States. In general, habitats with high native species richness were more heavily invaded than species-poor habitats, low-elevation areas were more invaded than high-elevation areas, and riparian zones were more invaded than nearby upland sites. For the 100 1000-m2 plots (across all vegetation types), 50% of the variation in nonnative species richness was explained by longitude, latitude, native plant species richness, soil total percentage nitrogen, and mean maximum July temperature (n = 100 plots; P < 0.001). At the vegetation-type scale (n = 25 sets of four 1000-m2 plots/type), 64% of the variation in nonnative species richness was explained by native plant species richness, elevation, and October to June precipitation (P < 0.001). The foliar cover of nonnative species (log) was strongly positively correlated with the nonnative species richness at the plot scale (r = 0.77, P < 0.001) and vegetation-type scale (r = 0.83, P < 0.001). We concluded that, at the vegetation-type and regional scales in the north–central United States, (1) vegetation types rich in native species are often highly vulnerable to invasion by nonnative plant species; (2) where several nonnative species become established, nonnative species cover can substantially increase; (3) the attributes that maintain high native plant species richness (high light, water, nitrogen, and temperatures) also help maintain nonnative plant species richness; and (4) more care must be taken to preserve native species diversity in highly vulnerable habitats.  相似文献   

20.
Abstract: Increasing regional vegetation activity has been frequently found especially in middle and high latitude and alpine areas, but the effects of which on regional hydrology is still highly uncertain. The Upstream Catchment of Minjiang River is a large mountainous catchment covering 22,919 km2 with a diverse vegetation distribution pattern, including alpine group (A), subalpine group (SA), and temperate and subtropical group (T/ST). The Seasonal Mann‐Kendall test, a nonparametric trend test method, detected consistent upward trends in all groups in monthly accumulated growing degree days (AGDDM) time series from 1982 to 2003, but no significant trend in mean monthly precipitation (MMP) time series in any group. The alpine group had a significant (p = 0.024) upward trend in monthly Normalized Difference of Vegetation Index (NDVI) time series from 1982 to 2003, in contrast, the SA and T/ST groups had decreasing (although not significant) trends. AGDDM plays more important role than MMP in affecting NDVI change in alpine areas, indicating temperature was the main climatic driver. In contrast, water was the main driver for the T/ST group, as indicated by the significant correlation between NDVI and MMP and a weak correlation with AGDDM. Correlation coefficients of NDVI and river flow varied with seasons, mostly negative, especially during the growing season (April to October). A significant (p = 0.025) correlation was found only in August, indicating that an increase in peak‐NDVI decreased high flow significantly. TI‐NDVIc, which was developed in an attempt to track the vegetation change at the catchment scale, accounted for more than 40% of the evapotranspiration increase (r2 = 0.43).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号