首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Varroa jacobsoni reproduces both in drone and worker brood cells of honey bees, but in drone cells reproductive success is higher than in worker cells. A simple model using clonal population growth as a fitness measure has been developed to study the circumstances under which specialization on drone brood would be a better strategy than reproduction in both types of cell. For European Apis mellifera, the model suggests that if mites have to wait less than 7 days on average before they can invade a drone cell, specialization on drone brood would be a better strategy. This is close to the estimated waiting time of 6 days. Hence, small differences in reproductive success in drone and worker cells and in the rate of mortality may determine whether specialization on drone brood will be promoted or not. In European A. mellifera colonies, Varroa mites invade both drone and worker cells, but specialization on drone brood cells seems to occur to some extent because drone cells are more frequently invaded than worker cells. In the parasite-host association of V. jacobsoni with African or Africanized A. mellifera or with A. cerana, the mites also invade both drone and worker cells, but the mites specialize on drone brood for reproduction since a large percentage of the mites in worker brood do not reproduce. Only in the parasite-host association of Euvarroa sinhai, a mite closely resembling V. jacobsoni, and A. forea is specialization complete, because these mites only invade drone brood.  相似文献   

2.
Summary. Africanized honey bees (AHBs) of Brazil and Mexico have proven to be tolerant to Varroa destructor mites. In contrast, European honey bees (EHBs: Apis mellifera carnica) at the same tropical study site are highly intolerant to these ectoparasites. A lower attractiveness of Varroa-tolerant AHB larvae has been hypothesised to be an important trait in reducing the susceptibitlity of AHBs to these mites. Thus, selection for EHB brood that is less attractive to mites is thought to be one possibility for limiting mite population growth and thus increase the tolerance of EHBs to the mite.?In Ribeir?o Preto, Brazil, European A. m. carnica bees and AHBs were tested with respect to their rate of brood infestation and brood attractiveness to Varroa mites. For the comparison of brood infestation rates, we introduced combs with pieces of EHB and AHB brood into honey bee colonies (18 repetitions). The relative infestation rate of EHB brood was significantly higher compared to AHB brood.?The preference behaviour of single Varroa mites was tested in a laboratory bioassay where either living host stages were offered or host extracts were presented on dummies. By these tests we could confirm the preference of Varroa females for certain developmental host stages and for their corresponding extracts. In contrast to the within-colony results, Varroa mites in the laboratory bioassay showed a slight preference for AHB compared to EHB larvae.?The gas chromatographic analysis revealed differences in the chemical spectrum of extracts obtained from different larvae. In accord with the results of the bioassays, we could detect stage-specific odour differences in larval cuticular compounds, including methyl esters and hydrocarbons that have been described as kairomones. None of these substances, however, revealed significant race-specific differences. Therefore, the quantity and composition of certain cuticular compounds seem to be responsible only for the recognition of a suitable host stage by Varroa females. The different infestation rates in the colonies, however, seem to be caused neither by race-specific differences in attractiveness of bee larvae nor by an extended attractive period of EHB larvae: both AHB and EHB larvae become attractive approximately 21 h before capping of the brood cell, and thus have the same window of time when they can be parasitised.?Therefore differential Varroa-infestation rates are not related to larval attraction but probably are determined by other race-specific and colony-related factors. Received 11 June 2001; accepted 19 November 2001.  相似文献   

3.
Queen control of egg fertilization in the honey bee   总被引:3,自引:0,他引:3  
The study investigated the precision with which honey bee queens can control the fertilization of the eggs they lay. Because males and workers are reared in different-sized cells, the honey bee is one of the few Hymenoptera in which it is possible for the experimenter to know which type of egg a queen “intends” to lay. Eggs were collected from both worker and drone (male) cells from four honey bee colonies. Ploidy of the embryo was determined using polymorphic DNA microsatellites. All 169 eggs taken from worker cells were heterozygous at at least one microsatellite locus showing that the egg was fertilized. All 129 eggs taken from drone cells gave a single band at the B124 locus, strongly suggesting haploidy. These data show that honey bee queens have great, and quite possibly complete, ability to control the fertilization of the eggs they lay. Data from the literature suggest that in two species of parasitoid Hymenoptera (Copidosoma floridanum, Colpoclypeus florus) females have great, but not complete, ability to control fertilization. Received: 23 December 1997 / Accepted after revision: 17 May 1998  相似文献   

4.
选用中国蜂种中华蜜蜂工蜂作为受试生物,建立其环境危害评价毒性测试方法,用所建立的方法对全氟辛烷磺酸盐(PFOS)替代品进行了接触急性毒性及经口急性毒性风险评价,并比较了"小烧杯法"和"饲喂管法"两种经口毒性方法的优缺点及对毒性结果的影响。研究结果表明,"小烧杯法"实验中C4织物三防整理剂对中华蜜蜂的24h-LC50为1435mg·L~(-1),48h-LC_(50)为284.67mg·L~(-1);其余替代品在限度实验均未出现蜜蜂死亡,4种PFOS替代品对中华蜜蜂的接触毒性及经口毒性均为低毒,但"小烧杯法"测得的经口毒性结果比"饲喂管法"高。  相似文献   

5.
Summary. Varroa reproduction is closely synchronized to the development of its host. In this study we present a new bioassay for field and laboratory tests to evaluate host factors triggering Varroa oogenesis. Female mites deprived of feeding activated oogenesis when perceiving larval volatiles. In laboratory assays the living L5-larva and pentane extracts of the larval cuticle had a clear activating effect. Wax and larval food did not elicit Varroa oogenesis. The activating components apparently are in the polar fraction of the cuticular volatiles. The consequences of this regulative mechanism for the host parasite relationship and prospects for further research are discussed.  相似文献   

6.
DNA was extracted from worker and drone pupae of each of five colonies of the dwarf honey bee Apis florea. Polymerase chain reactions (PCR) were conducted on DNA extracts using five sets of primers known to amplify microsatellite loci in A. mellifera. Based on microsatellite allele distributions, queens of the five colonies mated with at least 5–14 drones. This is up to 3 times previous maximum estimates obtained from sperm counts. The discrepancy between sperm count and microsatellite estimates of the number of matings in A. florea suggests that despite direct injection of semen into the spermatheacal duct, either A. florea drones inject only a small proportion of their semen, or queens are able to rapidly expel excess semen after mating. A model of sexual selection (first proposed by Koeniger and Koeniger) is discussed in which males attempt to gain reproductive dominance by increasing ejaculate volume and direct injection of spermatozoa into the spermatheca, while queens attempt to maintain polyandry by retaining only a small fraction of each male's ejaculate. It is shown, at least in this limited sample, that the effective number of matings is lower in A. florea than in A. mellifera.  相似文献   

7.
Honey bee workers are able to distinguish queen-laid eggs from worker-laid eggs, and remove (‘police’) worker-laid eggs. The cue that police workers use is as yet unidentified but is likely to be a chemical signal. This signal benefits queens for it ensures their reproductive monopoly. It also benefits collective workers because it allows them to raise more closely related queen-laid males than the less-related sons of half sisters. Because both parties benefit from the egg-marking signal, it should be stable over evolutionary time. We show that Apis mellifera workers can distinguish queen-laid from worker-laid eggs of the dwarf honey bee A. florea, a phylogenetically distant species that diverged from the A. mellifera lineage 6–10 mya. However, A. mellifera workers are unable to distinguish worker-laid eggs of A. cerana, a much more recent divergence (2–3 mya). The apparent change in the egg-marking signal used by A. cerana may be associated with the high rates of ovary activation in this species.  相似文献   

8.
Sections of brood from colonies of the Cape honeybee ( Apis mellifera capensis), the African honeybee ( A. m. scutellata), and hybrid bees of the two races were exchanged between colonies to study the effect of different brood-origin/nurse-bee combinations on development of caste characters. When Cape larvae were raised by African workers the amount of food provided almost doubled in comparison with Cape larvae reared by their own workers. In contrast, African larvae raised by Cape workers were provided with only half the amount they received from their own workers. After the bees emerged, we found a large degree of plasticity in characters related to caste differentiation, which corresponded closely to the amount of food provided. Super-fed Cape bees had enlarged spermathecae, were heavier than normal workers and developed more rapidly, and had reduced pollen combs, all typical for a more queen-like condition. Ovariole numbers did not appear to be enhanced by additional feeding. Cape bees that behave as social parasites in African bee colonies were most queen-like in the characters studied, albeit within the range that was found for Cape bees from normal colonies, suggesting within-colony selection for characters that enhance reproduction.Communicated by R. Page  相似文献   

9.
Carpenter bees (Xylocopa spp.) act as primary nectar thieves in rabbiteye blueberry (Vaccinium ashei Reade), piercing corollas laterally to imbibe nectar at basal nectaries. Honey bees (Apis mellifera L) learn to visit these perforations and thus become secondary nectar thieves. We tested the hypothesis that honey bees make this behavioral switch in response to an energetic advantage realized by nectar-robbing flower visits. Nectar volume and sugar quantity were higher in intact than perforated flowers, but bees (robbers) visiting perforated flowers were able to extract a higher percentage of available nectar and sugar so that absolute amount of sugar (mg) removed by one bee visit is the same for each flower type. However, because perforated flowers facilitate higher rates of bee flower visitation and the same or higher rates of nectar ingestion, they are rendered more profitable than intact flowers in temporal terms. Accordingly, net energy (J) gain per second flower handling time was higher for robbers on most days sampled. We conclude that the majority evidence indicates an energetic advantage for honey bees that engage in secondary nectar thievery in V. ashei.Communicated by R. Page  相似文献   

10.
Nest site selection in the open-nesting honeybee Apis florea   总被引:1,自引:0,他引:1  
We studied nest site selection by swarms of the red dwarf honeybee, Apis florea. By video recording and decoding all dances of four swarms, we were able to determine the direction and distances indicated by 1,239 dances performed by the bees. The bees also performed a total of 715 nondirectional dances; dances that were so brief that no directional information could be extracted. Even though dances converged over time to a smaller number of areas, in none of the swarms did dances converge to one site. As a result, even prior to lift off, bees performed dances indicating nest sites in several different directions. Two of four swarms traveled directly in what seemed to be the general direction indicated by the majority of dances in the half hour prior to swarm lift off. The other two traveled along circuitous routes in the general direction indicated by the dances. We suggest that nest site selection in A. florea has similar elements to nest site selection in the better-studied Apis mellifera. However, the observation that many more locations are indicated by dances prior to lift off also shows that there are fundamental differences between the two species.  相似文献   

11.
All honeybee species make use of the waggle dance to communicate the direction and distance to both food sources and potential new nest sites. When foraging, all species face an identical problem: conveying information about profitable floral patches. However, profound differences in nesting biology (some nest in cavities while others nest in the open, often on a branch or a cliff face) may mean that species have different requirements when dancing to advertise new nest sites. In cavity nesting species, nest sites are a precise location in the landscape: usually a small opening leading to a cavity in a hollow tree. Dances for cavities therefore need to be as precise as possible. In contrast, when the potential nest site comprises a tree or perhaps seven a patch of trees, precision is less necessary. Similarly, when a food patch is advertised, dances need not be very precise, as floral patches are often large, unless they are so far away that recruits need more precise information to be able to locate them. In this paper, we study the dance precision of the open-nesting red dwarf bee Apis florea. By comparing the precision of dances for food sources and nest sites, we show that A. florea workers dance with the same imprecision irrespective of context. This is in sharp contrast with the cavity-nesting Apis mellifera that increases the precision of its dance when advertising a potential new home. We suggest that our results are in accordance with the hypothesis that the honeybees’ dance communication initially evolved to convey information about new nest sites and was only later adapted for the context of foraging.  相似文献   

12.
Abstract: Concerns about pollinator declines have grown in recent years, yet the ability to detect changes in abundance, taxonomic richness, and composition of pollinator communities is hampered severely by the lack of data over space and time. Citizen scientists may be able to extend the spatial and temporal extent of pollinator monitoring programs. We developed a citizen‐science monitoring protocol in which we trained 13 citizen scientists to observe and classify floral visitors at the resolution of orders or super families (e.g., bee, wasp, fly) and at finer resolution within bees (superfamily Apoidea) only. We evaluated the protocol by comparing data collected simultaneously at 17 sites by citizen scientists (observational data set) and by professionals (specimen‐based data set). The sites differed with respect to the presence and age of hedgerows planted to improve habitat quality for pollinators. We found significant, positive correlations among the two data sets for higher level taxonomic composition, honey bee (Apis mellifera) abundance, non‐Apis bee abundance, bee richness, and bee community similarity. Results for both data sets also showed similar trends (or lack thereof) in these metrics among sites differing in the presence and age of hedgerows. Nevertheless, citizen scientists did not observe approximately half of the bee groups collected by professional scientists at the same sites. Thus, the utility of citizen‐science observational data may be restricted to detection of community‐level changes in abundance, richness, or similarity over space and time, and citizen‐science observations may not reliably reflect the abundance or frequency of occurrence of specific pollinator species or groups.  相似文献   

13.
The Red Dwarf honeybee (Apis florea) is one of two basal species in the genus Apis. A. florea differs from the well-studied Western Hive bee (Apis mellifera) in that it nests in the open rather than in cavities. This fundamental difference in nesting biology is likely to have implications for nest-site selection, the process by which a reproductive swarm selects a new site to live in. In A. mellifera, workers show a series of characteristic behaviors that allow the swarm to select the best nest site possible. Here, we describe the behavior of individual A. florea workers during the process of nest-site selection and show that it differs from that seen in A. mellifera. We analyzed a total of 1,459 waggle dances performed by 197 scouts in five separate swarms. Our results suggest that two fundamental aspects of the behavior of A. mellifera scouts—the process of dance decay and the process of repeated nest site evaluation—do not occur in A. florea. We also found that the piping signal used by A. mellifera scouts to signal that a quorum has been reached at the chosen site, is performed by both dancing and non-dancing bees in A. florea. Thus, the piping signal appears to serve a different purpose in A. florea. Our results illustrate how differences in nesting biology affect the behavior of individual bees during the nest-site selection process.  相似文献   

14.
A single equation is derived to predict population-density effects on the reproduction rate of the honey bee parasite Varroa destructor Anderson and Trueman. This equation provides a simpler alternative to the approach currently used in the literature, and additionally corrects an anomaly in that approach. The method is then extended to the case of co-existing haplotypes of Varroa. It thus derives an equation used without proof for modelling biocontrol of Varroa, and examines the error caused by an approximation necessary for a closed form solution. Additionally a varroa population model incorporating the derived equation is described.  相似文献   

15.
Summary The sounds produced during the dance of the European honey bee, Apis mellifera, are potentially important in the reception of the dance information by recruit bees. I have studied the dances of the three Asian honey bee species and have found that the single species which nests in dark cavities like A. mellifera produces similar sounds, while the two open-nesting species produce none. This and other evidence suggest that the different species may perceive their dances through different sensory channels.  相似文献   

16.
Summary The study investigates whether worker policing via the selective removal of worker-laid male eggs occurs in normal honey bee colonies with a queen. Queenright honey bee colonies were set up with the queen below a queen excluder. Frames of worker brood and drone comb were placed above the queen excluder. Daily inspections of the drone frames revealed the presence of a few eggs, presumably laid by workers, at a rate of 1 egg per 16000 drone cells. 85% of these eggs were removed within 1 day and only 2% hatched. Dissections of workers revealed that about 1 worker in 10000 had a fully developed egg in her body. These data show that worker egg-laying and worker policing are both normal, though rare, in queenright honey bee colonies, and provide further confirmation of the worker policing hypothesis.  相似文献   

17.
In most social insect colonies, workers do not attempt to lay eggs in the presence of a queen. However, in the honey bee (Apis mellifera), a rare phenotype occurs in which workers activate their ovaries and lay large numbers of male eggs despite the presence of a fecund queen. We examined the proximate mechanisms by which this ‘anarchistic’ behaviour is expressed. We tested the effects of brood and queen pheromones on retinue attraction and worker ovary activation using caged worker bees. We found no difference between the anarchistic and wild type queen pheromones in the retinue response elicited in either wild type or anarchistic workers. Further, we found that anarchistic queens produce a pheromone blend that is as effective at inhibiting ovary activation as the wild type queen pheromone. However, anarchistic workers are less inhibited by queen pheromones than their wild type counterparts, in a dose-dependent manner. These results show that the anarchistic phenomenon is not due to changes in the production of queen pheromones, but rather is due in part to a shift in the worker response to these queen-produced signals. In addition, we demonstrate the dose-dependent nature of the effect of queen pheromones on honey bee worker ovary activation.  相似文献   

18.
Summary Acoustical signals emitted by dancing bees have recently been shown to transmit information about the location of food sources in the western honeybee, Apis mellifera. Towne (1985) reported that in the Asian honeybee species Apis dorsata, which builds a single comb in the open under overhanging rocks or tree branches, sound signals were not emitted by the dancers. This led to the conclusion that acoustical communication is restricted to bees that nest in the dark, like A. mellifera. Here we show that in fact A. dorsata produces dance sounds similar to those emitted by A. mellifera, and that these acoustical signals contain information about distance, direction and profitability of food sources. The acoustical transfer of information has thus evolved independently of nesting in dark cavities. The significance of nocturnal activity in Apis dorsata for the evolution of sound communication is discussed. Correspondence to: W.H. Kirchner  相似文献   

19.
Salps (mainly Salpa fusiformis and, to a lesser extent, Pegea socia) and a web-building pteropod (Corolla spectabilis) were studied in epipelagic waters of the central California Current. Although both kinds of gelatinous zooplankton trap phytoplankton in a mucus net, a fecal pellet analysis indicated that their diet differs significantly when they feed together, probably because of differences both in the pore sizes of their nets and in their feeding methods. Salps have a finemesh filter, on which they can retain even the smallest phytoplankton; thus, when small coccolithophores are abundant, as they were in our study, salp feces contain such cells and the coccoliths derived from them. In contrast, pteropods feeding in the same area produce fecal pellets consisting chiefly of larger phytoplankton, especially diatoms. Since fecal pellets transport most biogenic material to the deep sea, changes in herbivore species composition at a given geographic location can change the chemistry of materials entering deep water; at our study site, the more salps, the greater the calcite flux, and, the more pteropods, the greater the silica flux. In addition, fecal pellets of both salps and pteropods include partially digested residues of phytoplankton that appear as olive-green spheres, having an ultrastructure identical with that of the socalled olive-green cells. Presumably, fecal pellets, after sinking into deep water, ultimately disintegrate. releasing both the viable phytoplankton and the olive-green spheres into aphotic waters. Thus the feces of epipelagic herbivores are likely sources of much of the flora of the deep ocean.  相似文献   

20.
A honey bee (Apis mellifera) queen mates with about ten haploid drones, thus producing colonies composed of about ten subfamilies of super-sisters. An increasing but controversial body of literature supports the views that: (1) Members of each subfamily within a colony can recognise each other, and distinguish supersisters from half-sisters. (2) Members of each subfamily use this recognition information and increase the reproductive fitness of their own subfamily at the expense of half-sisters through behaviour termed nepotism. A mathematical model is developed that shows that task specialisation by subfamilies, and bees that repeatedly undertake the behaviour within subfamilies, can influence the numbers of interactions among super-sisters, relative to the numbers of interactions between half-sisters. The model is then evaluated using a data set pertaining to trophallaxis behaviour in a two-subfamily colony. It is concluded that with this data set, task specialisation and subfamily recognition were indeed confounded, suggesting that the apparent subfamily recognition could easily have been an artefact of task specialisation. Correspondence to: B.P. Oldroyd  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号