首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究城市燃气管网风险的动态性,针对传统风险分析方法的局限性,提出基于贝叶斯网络的燃气管网动态风险分析方法。构建燃气管网失效蝴蝶结模型并将其转化为贝叶斯网络模型;在事故发生状态下更新事件失效概率,识别出关键因素;根据异常事件数据和贝叶斯理论,对基本事件失效概率进行实时动态改变;随之更新管网失效及各后果发生的概率,从而实现管网的动态风险分析。研究结果表明:该方法克服了传统风险分析方法的不足,可动态反映燃气管网失效和事故后果发生概率随时间变化的特征,能够为城市地下燃气管网的风险分析与事故预防提供参考。  相似文献   

2.
Aging urban oil and gas pipelines have a high failure probability due to their structural degradation and external interference. The operational safety of the aging urban oil and gas pipeline is challenged by different hazards. This paper proposes a novel methodology by integrating an index-based risk evaluation system and fuzzy TOPSIS model for risk management of aging urban oil and gas pipelines, and it is carried out by evaluating the priority of hazards affecting pipeline safety. Firstly, the hazard factors of aging urban oil and gas pipelines are identified to establish an index-based risk evaluation system. Subsequently, the fuzzy TOPSIS model is employed to evaluate the importance of these hazard factors and to decide which factors should be managed with priority. This work measures the importance of a hazard factor from three aspects, i.e. occurrence (O), severity (S) and detectability (D), and the weights of these three parameters are determined by a combination weight method. Eventually, the proposed methodology is tested by an industrial case to illustrate its effectiveness, and some safety strategies to reduce the operational risk of the pipeline are presented. The proposed methodology is a useful tool to implement more efficient risk management of aging urban oil and gas pipelines.  相似文献   

3.
In urban areas, buried gas pipeline leakages could potentially cause numerous casualties and massive damage. Traditional static analysis and dynamic probability-based quantitative risk assessment (QRA) methods have been widely used in various industries. However, dynamic QRA methods combined with probability and consequence are rarely used to evaluate gas pipelines buried in urban areas. Therefore, an integrated dynamic risk assessment approach was proposed. First, a failure rate calculation of buried gas pipelines was performed, where the corrosion failure rate dependent on time was calculated by integrating the subset simulation method. The relationship between failure probability and failure rate was considered, and a mechanical analysis model considering the corrosion growth model and multiple loads was used. The time-independent failure rates were calculated by the modification factor methods. Next, the overall evolution process from pipeline failures to accidents was proposed, with the accident rates subsequently updated. Then, the consequences of buried gas pipeline accidents corresponding to the accident types in the evolution process were modeled and analyzed. Finally, based on the above research, dynamic calculation and assessment methods for evaluating individual and social risks were established, and an overall application example was provided to demonstrate the capacity of the proposed approach. A reliable and practical theoretical basis and supporting information are provided for the integrity and emergency management of buried gas pipelines in urban areas, considering actual operational conditions.  相似文献   

4.
页岩气集输管道运行压力和出砂量在生产过程中衰减显著,这导致管道失效概率不断变化,针对这一问题,采用贝叶斯网络方法,建立了页岩气集输管道失效概率动态计算模型。首先,分析页岩气气质特征、管道运行工况及失效原因,利用逻辑门的连接关系,建立了页岩气集输管道失效故障树;其次,基于贝叶斯网络与失效故障树的结构映射关系,将失效故障树转化成贝叶斯网络结构;然后,通过贝叶斯网络的参数学习,实现模型求解;最后,进行了实例应用。研究结果表明:该模型不仅可有效计算页岩气集输管道的失效概率,还能确定影响管道失效的关键风险因素,并且可通过调整节点的状态及概率分布,实现页岩气集输管道失效概率的更新。  相似文献   

5.
Urban gas pipelines usually have high structural vulnerability due to long service time. The locations across urban areas with high population density make the gas pipelines easily exposed to external activities. Recently, urban pipelines may also have been the target of terrorist attacks. Nevertheless, the intentional damage, i.e. terrorist attack, was seldom considered in previous risk analysis of urban gas pipelines. This work presents a dynamic risk analysis of external activities to urban gas pipelines, which integrates unintentional and intentional damage to pipelines in a unified framework. A Bayesian network mapping from the Bow-tie model is used to represent the evolution process of pipeline accidents initiating from intentional and unintentional hazards. The probabilities of basic events and safety barriers are estimated by adopting the Fuzzy set theory and hierarchical Bayesian analysis (HBA). The developed model enables assessment of the dynamic probabilities of consequences and identifies the most credible contributing factors to the risk, given observed evidence. It also captures both data and model uncertainties. Eventually, an industrial case is presented to illustrate the applicability and effectiveness of the developed methodology. It is observed that the proposed methodology helps to more accurately conduct risk assessment and management of urban natural gas pipelines.  相似文献   

6.
为解决储气库注采管柱螺纹失效问题,识别注采管柱螺纹失效致因与后果,基于蝴蝶结和贝叶斯网络方法构建注采管柱螺纹动态失效风险分析模型,采用模糊集理论计算模型变量先验概率,并评估注采管柱失效后果概率,从而推断注采管柱螺纹失效关键致因因素;引入先兆数据,评估注采管柱螺纹动态失效风险态势。结果表明:气体中携带固体颗粒、上螺纹速度过快、注采温度高、地层断裂等13个因素对螺纹失效风险影响较大;螺纹失效概率逐渐增大,螺纹失效后果也越来越严重,需要监控螺纹失效关键致因以降低螺纹失效的风险。  相似文献   

7.
为分析多因素耦合作用对城市燃气管道失效可能性的影响,构建了基于复杂网络的N-K模型;应用轨迹交叉理论分析管道失效可能性因素的耦合作用机理;基于N-K模型对2011—2014年所发生的1 127起城市燃气管道事故进行耦合分析,计算不同耦合方式发生的概率和耦合值。结果表明:多因素耦合过程中,参与耦合的因素越多,管道失效的概率越大,但耦合发生的频率却随耦合因素的增加逐渐减少;环境因素和人为因素参与耦合时,管道失效的概率较大。  相似文献   

8.
为保障油气管道运行安全,将投影寻踪聚类的方法引入油气管道失效可能性评价中,从系统理论的角度将油气管道失效分为致灾因子危险性、承灾体的脆弱性和应对能力脆弱性3个子系统,据此建立油气管道失效可能性评估指标体系,然后基于投影寻踪聚类的失效可能性评价模型,对油气管道失效可能性进行量化分析,从而确定其失效可能性等级。实例分析表明,所建立的失效可能性评价模型能对油气管道失效可能性进行评价,可为管道的风险管理提供决策依据。  相似文献   

9.
为全面、客观地评价城市燃气管道风险,提出1种基于AHP-熵权法的城市燃气管道风险评价模型.该模型基于风险评价理论,结合管道失效可能性与后果严重性,构建包含105个评价底因素的城市燃气管道风险评价指标体系.针对城市燃气管道风险因素的复杂性和模糊性,引入模糊数学思想和方法,结合AHP和熵权法确定评价指标的综合权重,再运用模...  相似文献   

10.
This paper presents a game theory methodology for risk management of urban natural gas pipelines, which is a collaborative participation mechanism of the stakeholders, including government, pipeline companies, and the public. Firstly, the involvement proportion of stakeholders in risk management under rational conditions is estimated by the static game theory. Subsequently, the system dynamics (SD) simulation is used to establish an evolution game model of stakeholders in risk management under the irrational conditions, in which the stability of the evolution game process is analyzed. The stakeholders’ involvement proportions from the static game model are utilized as the inputs for the evolution game model to simulate the dynamic evolution behavior of risk management strategies with different involvement proportions of stakeholders. Eventually, the dynamic evaluation game can extract an optimal strategy for risk management of urban natural gas pipelines. A case study is used to illustrate the methodology. In essence, this methodology can be extended for implementing risk management of urban infrastructure.  相似文献   

11.
At present, the prediction of failure probability is based on the operation period for laid pipelines, and the method is complicated and time-consuming. If the failure probability can be predicted in the planning stage, the risk assessment system of gas pipeline will be greatly improved. In this paper, the pre-laying assessment model is established to minimize risk of leakage due to piping layout. Firstly, Fault Tree Analysis (FTA) modeling is carried out for urban natural gas pipeline network. According to expert evaluation, 84 failure factors, which can be determined in the planning stage, are selected as the input variables of the training network. Then the FTA model is used to calculate the theoretical failure probability value, and the failure probability prediction model is determined through repeated trial calculation based on BP (Back Propagation Neural Network) and RBF (Radial Basis Function), for obtaining the optimal network parameter combination. Finally, two prediction models are used to calculate the same example. By comparing our pre-assessment model with the theoretical prediction consequences of the fault tree, the results show that the error of RBF prediction model can be close to 3%, which proves the validity and correctness of the method.  相似文献   

12.
城市油气管道穿越城区街道、建筑和居民区等特殊地段,保障其安全运行具有重要意义。为实现城市油气管道风险早期预警,基于城市与野外长输油气管道风险对比分析,识别城市油气管道风险预警指标;建立城市油气管道风险预警指标体系,采用区间层次分析法对预警指标重要度进行定量排序,确定关键预警监测点;并依据灾变链式理论,构建城市油气管道重大事故灾变链式模型,研究管道风险演化过程,发现灾变前兆进行断链减灾。研究结果表明:“腐蚀”及“第三方破坏”占据城市油气管道失效致因比重最大,风险因子“油气管道与市政管道距离”以及“城市工程施工作业”应作为城市油气管道重点监测点。同时,围绕城市油气管道风险预警需致力于孕源断链。  相似文献   

13.
Natural gas industry is developing rapidly, and its accidents are threatening the urban safety. Risk management through quantitative assessment has become an important way to improve the safety performance of the natural gas supply system. In this paper, an integrated quantitative risk analysis method for natural gas pipeline network is proposed. This method is composed of the probability assessment of accidents, the analysis of consequences and the evaluation of risk. It is noteworthy that the consequences analyzed here include those of the outside and inside gas pipelines. The analysis of consequences of the outside pipelines focuses on the individual risk and societal risk caused by different accidents, while those of the inside pipelines concerns about the risk of the economic loss because of the pressure re-distribution. Risk of a sample urban gas pipeline network is analyzed to demonstrate the presented method. The results show that this presented integrated quantitative risk analysis method for natural gas pipeline network can be used in practical application.  相似文献   

14.
This paper presents a novel quantitative risk analysis process for urban natural gas pipeline networks using geographical information systems (GIS). The process incorporates an assessment of failure rates of integrated pipeline networks, a quantitative analysis model of accident consequences, and assessments of individual and societal risks. Firstly, the failure rates of the pipeline network are calculated using empirical formulas influenced by parameters such as external interference, corrosion, construction defects, and ground movements. Secondly, the impacts of accidents due to gas leakage, diffusion, fires, and explosions are analyzed by calculating the area influenced by poisoning, burns, and deaths. Lastly, based on the previous analyses, individual risks and social risks are calculated. The application of GIS technology helps strengthen the quantitative risk analysis (QRA) model and allows construction of a QRA system for urban gas pipeline networks that can aid pipeline management staff in demarcating high risk areas requiring more frequent inspections.  相似文献   

15.
Corrosion is the main reason for the failure of buried gas pipelines. For effective corrosion failure probability analysis, the structural reliability theory was adopted in this study to establish two calculation models for pipeline corrosion failure: the pressure failure model and von Mises stress failure model. Then, two calculation models for the corrosion failure probability were established based on a corrosion depth growth model obtained from actual survey data of soil corrosion characteristics. In an example, Monte Carlo simulation (MCS) and subset simulation (SS) were used to analyze the corrosion failure probability of pipelines, and the results were compared. SS can compensate for the shortcomings of MCS as it has higher computational efficiency and accuracy. Therefore, SS was adopted to simulate variations in the corrosion failure probability of buried pipelines with the service time for the two failure probability calculation models, which were applied to a natural gas pipeline located in a chemical industry park in Zhuhai, China. A sensitivity analysis was carried out on the relevant parameters that affect the failure probability. The results showed that multiple loads caused by the covering soil, residual stress, temperature differential, and bending stress have a non-negligible effect on the pipeline reliability. The corrosion coefficients gradually become the most important factors that affect the failure probability with increased service time. The proposed methodology considers the actual operating conditions of pipelines to provide a reliable theoretical basis for integrity management.  相似文献   

16.
Loss of the underground gas storage process can have significant effects, and risk analysis is critical for maintaining the integrity of the underground gas storage process and reducing potential accidents. This paper focuses on the dynamic risk assessment method for the underground gas storage process. First, the underground gas storage process data is combined to create a database, and the fault tree of the underground gas storage facility is built by identifying the risk factors of the underground gas storage facility and mapping them into a Bayesian network. To eliminate the subjectivity in the process of determining the failure probability level of basic events, fuzzy numbers are introduced to determine the prior probability of the Bayesian network. Then, causal and diagnostic reasoning is performed on the Bayesian network to determine the failure level of the underground gas storage facilities. Based on the rate of change of prior and posterior probabilities, sensitivity and impact analysis are combined to determine the significant risk factors and possible failure paths. In addition, the time factor is introduced to build a dynamic Bayesian network to perform dynamic assessment and analysis of underground gas storage facilities. Finally, the dynamic risk assessment method is applied to underground gas storage facilities in depleted oil and gas reservoirs. A dynamic risk evaluation model for underground gas storage facilities is built to simulate and validate the dynamic risk evaluation method based on the Bayesian network. The results show that the proposed method has practical value for improving underground gas storage process safety.  相似文献   

17.
城市埋地燃气管道一旦失效会产生泄漏,甚至引发火灾爆炸等事故,造成人员伤亡和财产损失等严重后果,影响社会稳定,因此其安全运行十分重要。由于城市地下环境的复杂性,使得埋地燃气管道失效的因素多种多样,且具有模糊性;由于城市地面状况各异,所以构成失效后果的因素也具有不确定性。文章以某市在役燃气管道为例,使用模糊数学语言表达了埋地燃气管道的失效可能性和失效后果,采用模糊综合评价模型对燃气管道的失效可能性和失效后果进行了评价,并以美国石油协会(API)风险矩阵表征了埋地燃气管道的风险等级,得到不同管道单元的风险级别和管道单元数,根据不同的风险等级采取不同的策略或措施,完善管道的完整性管理,降低管道的使用风险,确保城市燃气管网的正常安全运行。  相似文献   

18.
城市天然气管网预警系统的研究与实现   总被引:1,自引:0,他引:1  
随着城市天然气管网密度加大,由于天然气管理手段滞后导致的天然气泄漏事故急剧增加。基于GIS技术并结合燃气管网定量风险分析(QRA)模型,提出利用定量风险分析模型实现管网风险预警的方法。结合C#+ArcEngine编程技术,开发城市天然气管网预警系统,实现管网失效率分析、燃气事故扩散模拟、火灾及爆炸模拟、个人风险等值线绘制、社会风险分析等功能,能够进行区域性事故后果预测、个人风险和社会风险计算、安全性评价及应急预案编制等项工作。  相似文献   

19.
为确定燃气管网风险评估的关键风险因素,以A省各地市燃气管网为研究对象,基于燃气专家经验确定燃气管线风险等级,提出基于Logistic回归的燃气管网风险因素重要度分析方法。采用样本增强及随机抽样的方式,选取400个均衡样本作为管网评估数据输入,通过因子分析方法对其进行降维,得到3个公共因子并作为一级指标反向构建燃气管网风险评估指标体系;利用有序多分类Logistic回归方法,根据回归系数绝对值大小对风险因素进行重要度排序。研究结果表明:外界环境对燃气管网风险的贡献程度相对较高,管道自身因素和巡检养护次之。研究结果可为城市燃气风险防控提供理论依据和方法参考。  相似文献   

20.
天然气管道失效个人生命风险评价技术研究   总被引:1,自引:0,他引:1  
为研究天然气长输管道失效个人生命风险,提出一种以人员伤亡概率为指标的天然气管道失效后果风险评价方法。基于天然气管道的失效概率和失效致死长度参数,建立天然气长输管道生命风险评价模型。用该模型,对国内某城市住宅小区内带腐蚀缺陷的天然气管线进行定量风险分析。借鉴英国天然气输送公司数据,确定天然气管线个人生命风险值。案例证明,用所建立的天然气管道失效个人生命风险评价模型能够有效地分析带缺陷天然气管道失效后果,实现天然气管道的个人安全生命风险全定量评价。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号