首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liquefied natural gas (LNG) has been largely indicated as a promising alternative solution for the transportation and storage of natural gas. In the case of accidental release on the ground, a pool fire scenario may occur. Despite the relevance of this accident, due to its likelihood and potential to trigger domino effects, accurate analyses addressing the characterization of pool fires of LNG are still missing.In this work, the fire dynamic simulator (FDS) has been adopted for the evaluation of the effects of the released amount of fuel and its composition (methane, ethane, and propane), on the thermal and chemical properties of small-scale LNG pool fire. More specifically, the heat release rate, the burning rate, the flame height, and thermal radiation, at different initial conditions, have been evaluated for pool having diameter smaller than 10 m. Safety distances have been calculated for all the investigated conditions, as well.Results have also been compared with data and correlations retrieved from the current literature. The equation of Thomas seems to work properly for the definition of the height over diameter ratio of the LNG pool fire for all the mixture and the investigated diameters.The addition of ethane and propane significantly affects the obtained results, especially in terms of radiative thermal radiation peaks, thus indicating the inadequacy of the commonly adopted assumption of pure methane as single, surrogate species for the LNG mixture.  相似文献   

2.
Increasing globalization has made many chemical supply chains large, interdependent and complex. Process incidents often affect the reliability of a supply chain and can cause large disruptions at different segments of the industry. We propose an optimization-based framework that systematically takes into account the trade-offs between process safety and supply chain economics for decision-making. We quantify the hazard at various supply chain echelons in the form of a safety index that takes both fire and toxic hazards into account. A mixed-integer nonlinear programming (MINLP)-based model is developed to either maximize profit for specified hazard limits, or to minimize hazard in a supply chain with multiple production plants, technological options, warehouses and distribution nodes. The MINLP model is used to generate trade-off optimal solutions for various toxic and fire hazard limits. The framework is demonstrated by applying it to an end-to-end ammonia supply chain case study which resulted in several non-intuitive observations regarding hazardous supply chain design and optimization.  相似文献   

3.
In recent years, particular interest has been direct to the issues of risk associated with the storage, transport and use of Liquefied Natural Gas (LNG) due to the increasing consideration that it is receiving for energy applications. Consequently, a series of experimental and modeling studies to analyze the behavior of LNG have been carried out to collect an archive of evaporation, dispersion and combustion information, and several mathematical models have been developed to represent LNG dispersion in realistic environments and to design mitigation barriers.This work uses Computational Fluid Dynamics codes to model the dispersion of a dense gas in the atmosphere after accidental release. In particular, it will study the dispersion of LNG due to accidental breakages of a pipeline and it will analyze how it is possible to mitigate the dispersing cloud through walls and curtains of water vapor and air, also providing a criterion for the design of such curtains.  相似文献   

4.
液化天然气(LNG)加注船是一种为LNG动力船提供燃料的新型船舶,国内目前尚处于起步阶段,缺乏相关安全标准和规范。采用国际定量风险评价(QRA)的通用理念,研究适用于我国LNG加注船的安全评价方法,提出具体实施步骤和依据准则,并以国内某LNG加注船作为实例分析说明。建立加注船LNG火灾事故树,确定相关火灾事故概率;研究适合加注船火灾事故后果的方形火焰模型,以及LNG火灾热辐射对人体伤害的计算方法;参考国际海事组织(IMO)的风险准则,确定LNG加注船个人风险和社会风险;最后与按NFPA-59A计算的防火间距作对比分析。通过计算,例中加注船的风险位于须采取相关安全措施的ALARP区域,风险控制区域半径20m。若按NFPA-59A要求计算防火间距,该加注船对外部须划定半径52m区域作为安全区域,且须将船身增长37m以满足内部防火要求,在实际工程中无法实现,相比较QRA方法更适合我国LNG加注船的安全评价工作。  相似文献   

5.
Various governments have defined a so-called safety chain to structure their efforts in the field of risk management for low-probability disasters. The safety chain typically consists of the following components: proaction, prevention, preparation, repression. While the terminology suggests that the safety chain should be interpreted a series system, the safety chain more closely resembles a parallel system. This has important implications: the safety chain is not as weak as its weakest link; unreliable links need not always be strengthened as it will often be more efficient to rely on a few layers of protection, or just one. To avoid misguided efforts caused by the confusing terminology ‘safety chain’, we propose the use of the term ‘layers of protection’, as is currently the case in the Dutch flood safety policy. Furthermore, we show that imperfect preparedness for low-probability disasters is often perfectly defensible or rational, given the differences between the cost-effectiveness of investments in prevention and disaster preparedness.  相似文献   

6.
Evaluating potential hazards caused by accidental LNG release from underwater pipelines or vessels is a significant consideration in marine transportation safety. The aim of this study was to capture the dynamic behavior of LNG jet released under water and to analyze its vapor dispersion characteristics and combustion characteristics on the water surface during different release scenarios. Controlled experiments were conducted where LNG was jet released from a cryogenic storage tank. The dynamic process of LNG being jet released from orifices of different sizes and shapes, as well as the rising plume structure, were captured by a high-speed camera. The leakage flow rate and pipeline pressure were recorded by a flow meter and pressure gauge, respectively. The concentration distribution that emanated from the water surface was measured utilizing methane sensors in different positions with various wind speeds. The flame combustion characteristics of LNG vapor clouds, which immediately ignited upon the enclosed water tank, were also recorded. Additionally, the mass burning rate of the flame on the water surface was evaluated, and a new correlation between the ratio of flame length and width was established. The results indicated a large dimensionless heat release rate (Q*) and a continuous release flow rate in a limited burning area. This study could provide greater understanding of the mechanisms of LNG release and combustion behavior under water.  相似文献   

7.
After investigating gas dispersion on a cylindrical Floating Liquefied Natural Gas (FLNG) platform (Li et al, 2016), this second article focuses on assessment of gas explosion by using Computational Fluid Dynamics (CFD). Gas explosion simulations are carried out to evaluate the explosion overpressure mitigating effect of safety gap. The Data-dump technique, which is an effective tool in resetting turbulence length scale in gas explosion overpressure calculation, is applied to ensure simulation accuracy for the congestion scenario with safety gap. Two sets of different safety gaps are designed to investigate the safety gap on the cylindrical FLNG platform, the overall results indicate that the safety gap is effective in reducing overpressure in two adjacent congestions. However, for the explosion scenario where the flame is propagating through several safety gaps to the far field congestion, the safety gap mitigates overpressure only in certain explosion protecting targets. Two series of artificial configurations are modeled to further investigate the explosion scenarios with more than two safety gaps in one direction. It is concluded that the optimal safety gap design in overpressure mitigation for the cylindrical FLNG platform is to balance the safety gap distance ratio in the congested regions.  相似文献   

8.
While the effect of the safety gap on explosions is well known, little has been carried out to evaluate the effect of the safety gap on dispersion of gas releases, this paper evaluates the effect of safety gap on gas dispersion for a cylindrical Floating Liquefied Natural Gas (FLNG) vessel. The realistic ship-shaped and circular FLNG platforms are established and used for the detailed CFD based analysis; rather than the structural and hydrodynamics advantages of mobility, stability and cost efficiency etc., this study aims to investigate the safety of gas dispersion on the cylindrical FLNG and compare the safety gap effects on different configurations. A series of different safety gap configurations are evaluated for gas dispersion occurring in near field for the traditional FLNG while both near field and far field gas dispersion simulations are conducted on the cylindrical one. The overall results indicate that the safety gap is effective in reducing the gas cloud size in both FLNG configurations, however, when it comes to the gas dispersion in the far field against the leakage point, the safety gap increases the gas cloud size in the cylindrical FLNG vessel on the contrary.  相似文献   

9.
In recent years, the global demand for liquefied natural gas (LNG) as an energy source is increasing at a very fast rate. In order to meet this demand, a large number of facilities such as platforms, FPSO (floating production, storage and offloading), FSRU (floating storage and regasification unit) and LNG ships and terminals are required for the storage, processing and transportation of LNG. Failure of any of these facilities may expose the market, companies, personnel and the environment to hazards, hence making the application of risk analysis to the LNG sector a very topical issue throughout the world. To assess the risk of accidents associated with LNG facilities and carriers, various risk analysis approaches have been employed to identify the potential hazards, calculate the probability of accidents, as well as assessing the severity of consequences. Nonetheless, literature on classification of the risk analysis models applied to LNG facilities is very limited. Therefore, to reveal the holistic issues and future perspectives on risk analysis of LNG facilities, a systematic review of the current state-of-the-art research on LNG risk analysis is necessary. The aim of this paper is to review and categorize the published literature about the problems associated with risk analysis of LNG facilities, so as to improve the understanding of stakeholders (researchers, regulators, and practitioners). To achieve this aim, scholarly articles on LNG risk analysis are identified, reviewed, and then categorized according to risk assessment methods (qualitative, semi-qualitative or quantitative; deterministic or probabilistic; conventional or dynamic), tools (ETA, FTA, FMEA/FMECA, Bayesian network), output/strategy (RBI, RBM, RBIM, facility siting, etc.), data sources (OREDA handbook, published literature, UK HSE databases, regulatory agencies' reports, industry datasets, and experts’ consultations), applications (LNG carriers and LNG fuelled ships, LNG terminals and stations, LNG offshore floating units, LNG plants), etc. Our study will not only be useful to researchers engaged in these areas but will also assist regulators, policy makers, and operators of LNG facilities to find the risk analysis models that fit their specific requirements.  相似文献   

10.
The need for sustainable energy sources, as well as the current energetic crisis involving the majority of markets, has promoted the use of cryogenic liquefaction for the transportation and storage of natural gas (i.e., LNG). To guarantee the development of a robust and safe infrastructure, a complete understanding of the main phenomena occurring at low temperatures is paramount. In this sense, the largest grey areas are the characterization of the combustion at low-initial temperature and the interactions between water and cryogenic liquid. For these reasons, this work presents an experimental campaign on the possible mitigation strategies for the mitigation of consequences related to the accidental release of LNG. Particular emphasis was posed on the direct and indirect effects of water on cryogenic pool fire. The former resulted in a significant increase in the dimensions of fire (∼+50%) and burning rate (∼300%) with respect to the case with no direct contact between water and LNG, whereas the latter generated an abrupt decrease in the measured temperatures (<100 °C). The use of an emergency flare to empty an LNG tank was tested, as well. The spatial distribution of temperature was monitored along with the time to guarantee the safe operability of this equipment in the case of LNG combustion. The explanations for the observed phenomena and trends were provided, allowing for the development of safe procedures for the emergency response related to cryogenic fuels.  相似文献   

11.
针对几起煤气系统中供配电系统的事故案例 ,分析了供配电系统故障对煤气系统的危害 ,提出了对策与建议。  相似文献   

12.
LNG船舶锚泊安全距离定量计算建模   总被引:1,自引:0,他引:1  
为保障液化天然气船舶(LNG船舶)锚泊安全,提出了一种基于船舶漂移运动和船舶碰撞风险的锚泊安全距离计算方法.首先,结合船舶运动数学模型,通过蒙特卡洛模拟LNG船舶走锚漂移运动,得出走锚漂移方向概率密度函数,从而确定船舶走锚漂移横向、纵向距离;同时,结合船舶碰撞概率模型、船舶碰撞损害模型和LNG火灾模型,建立LNG船舶碰撞风险模型,确定满足碰撞概率和风险可接受的安全距离.最后,比较两种模型计算结果,并取其较大值作为LNG船舶锚泊安全距离.结果表明,LNG船锚泊安全距离不仅与环境水域的风、流情况有关,还与附近水域内船舶大小及速度有关.建议交通管理中需结合水域环境特征和水域船舶特点确定LNG船舶的锚泊安全距离.  相似文献   

13.
介绍了某天然气站的基本情况,利用道化学指数评价法,对该站储罐区的1个3000m3球罐进行风险评价,评价结果表明:该罐火灾爆炸指数为149.1,危险等级是较大。一旦罐内天然气在储存过程中发生火灾、爆炸,将使半径38.17m内,面积4574.82m2内的设备、设施受到损害,最大可能财产损失为0.66A万元。由于罐区采取了一些安全措施对储罐安全进行补偿,有效地降低了事故损失。为操作管理者更加全面地了解整个罐区的风险状况提供参考,有利于天然气储罐区的规划、管理及事故预防等。  相似文献   

14.
为应对洪涝、新冠肺炎疫情等突发灾难,提出供应物资满足率最大、供应时间最短、供应成本最低的离散时间马尔科夫链-多目标规划模型(DTMC-MOP),动态地识别、分析、应对应急供应链风险;采用改进自适应NSGA-Ⅱ算法求解优化模型,并通过标准测试函数进行测试与评价,验证模型的可行性和有效性;通过算例分析,获得精度更高、分布更均匀的Pareto最优前沿。研究结果表明:决策者可以依据应急管理核心目标或不同偏好选择相适应的应急方案,研究结果可为应急供应链决策优化提供1种科学方法,对保障灾民生命安全、维护社会和谐稳定具有积极意义。  相似文献   

15.
为有效规避冷链供应链受突发事件带来的不利影响,并强化其应急体系协同化发展,提出基于层次分析法和序参量法的应急冷链供应链协同化水平评价模型。模型以供应链协同化理论为基础,从协同化目标入手构建影响其协同化水平的测度指标体系;利用层次分析法确定评价指标的综合权重,最后运用序参量法评估冷链供应链各应急环节的协同度。结果表明:评价模型能有效评估应急冷链供应链协同化水平,可为冷链供应链应对突发事件提供参考。  相似文献   

16.
E.A. Kapp 《Safety Science》2012,50(4):1119-1124
The current study investigates the influence of the leadership practices of first-line supervisors on the safety compliance and safety participation of the employees who work for them. Contingent reward and transformational leadership are examined under conditions of positive and non-positive group safety climate in both the manufacturing and constructions sectors. Using moderated regression models (Aguinis, 2004) results indicate that greater levels of transformational and contingent reward leadership are both associated with greater levels of safety compliance and safety participation behavior, however group safety climate moderates the leadership-safety compliance relationships. Under positive group safety climate conditions employee safety compliance behavior improves as supervisor’s leadership practices increase; under non-positive group safety compliance conditions there is no improvement in safety compliance with improvements in supervisor’s leadership practices. The results provide further support to the growing literature on the value of strong group safety climates for improving safety compliance behavior, as well as the value in improving the leadership practices of first-line supervisors.  相似文献   

17.
火灾事故后果评价方法在LNG储罐发生BLEVE爆炸上的应用   总被引:6,自引:0,他引:6  
勒自兵 《火灾科学》2004,13(4):256-261
介绍了LNG储罐站的发展背景和现状;采用火灾事故后果分析方法建模,分析计算了LNG储罐站发生BLEVE爆炸所产生的火球直径、持续时间、提升高度、热辐射能量、冲击波破坏的范围、火灾爆炸事故对人及周围设施破坏的程度等;提出了在我国开展此类工程评估工作过程中的一些观点和设想。  相似文献   

18.
Relatively little previous research has investigated the meechanisms by which safety climate affects safety behavior. The current study examined the effects of general organizational climate on safety climate and safety performance. As expected, general organizational climate exerted a significant impact on safety climate, and safety climate in turn was related to self-reports of compliance with safety regulations and procedures as well as participation in safety-related activities within the workplace. The effect of general organizational climate on safety performance was mediated by safety climate, while the effect of safety climate on safety performance was partially mediated by safety knowledge and motivation.  相似文献   

19.
伴随自然灾害频发而来的人道主义救援规模越来越大,针对救援业务流程的复杂性特征,从人道主义救援供应链业务流程分析入手,运用随机Petri网,对灾后响应阶段的救援供应链业务流程协同进行过程建模,并通过同构马尔科夫链,构建其可达图;应用Matlab软件,仿真人道主义救援供应链业务流程协同时间效能及运营效率。结果表明:模型能够检验救援业务流程中存在的瓶颈环节和耗时的主要活动,为提高人道主义救援供应链的运营效率提供理论支持及实践指导。  相似文献   

20.
为缓解液化天然气(LNG)泄漏事故后果,利用有色发烟剂模拟LNG泄漏扩散行为,研究水幕的关键参数,包括安装位置、安装高度等对罐区LNG泄漏云团稀释效果的影响,并采用计算流体力学(CFD)软件FLUENT验证试验结果。模拟结果与试验结果基本吻合,表明有色发烟剂试验能够定性模拟罐区LNG泄漏扩散及水幕稀释云团效果。水幕安装在储罐与泄漏源中间,并且安装高度高于云团2倍以上,能够有效稀释LNG云团,保护储罐安全。水幕稀释云团的主要物理机制是液滴与空气间动量交换抬升云团高度,形成的旋涡卷吸空气进入云团内部,加速云团稀释。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号