共查询到2条相似文献,搜索用时 15 毫秒
1.
Industrial and new energy applications of ionic liquids (ILs) may have to be used at high temperatures conditions, such as in batteries and fuel applications, which may cause thermal hazards. However, there are few studies on the thermal hazards of ILs. To ensure the thermal safety of ILs processes, three commonly used ILs were selected for analysis: 1-butyl-3-methylimidazolium nitrate ([Bmim]NO3), 1-butyl-2,3-dimethylimidazolium nitrate ([Bmmim]NO3), and 1,3-dimethylimidazolium nitrate ([Mmim]NO3). The process hazards under adiabatic conditions demonstrated that [Bmmim]NO3 and [Mmim]NO3 have extensive explosion hazards. The self-reaction characteristics determined by the isothermal test indicated that the ILs are nth reactions, and the thermal decomposition features were also determined by thermogravimetric analysis. The data were obtained with a nonlinear thermodynamic model and used to establish the basic thermal hazards of the three ILs. In addition, based on the thermal equilibrium theory, the critical safety parameters can be inferred. The effects of heat transfer in 25.0 g and 50.0 g containers were discussed. The results show that [Mmim]NO3 will produce a thermal runaway reaction at a lower temperature (<100 °C) and has the shortest reaction time (<1 day), which means [Mmim]NO3 is considered to be the most hazardous material among the three ILs studied. 相似文献