首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To reveal the effects of different inert gases on explosion characteristics during low density polyethylene (LDPE) dust explosion and optimize the explosion-proof process, eight N2 (CO2)/air mixed inerting conditions were experimentally studied. Typical inerting conditions with 12 L cylindrical explosive tank were used to study the characteristics on the flame propagation. The thermogravimetric analysis with related theories were used to further explain the mechanism and quantities in low density polyethylene (LDPE) dust explosion with different inert gases. The results showed that the reduction of O2 concentration could effectively delay the progress of flame growth process and weaken the effect of dust combustion reaction. The flame growth process of condition (N2/air (18% O2)) was 2.05 times slower than that of the non-inert condition. The explosion strength was obviously reduced, and the characteristic parameters such as explosion pressure and flame propagation speed were also affected by the decrease of O2 concentration. For LDPE powder, the smaller the median diameter, the greater the explosion intensity and the lower the limiting oxygen content (LOC). The LOC with CO2 was usually higher than that with N2 and the effect of CO2 was significantly better than N2 in inerting.  相似文献   

2.
Explosion prevention is vital for process safety and daily life. In practice, inerting is viewed as an ideal method to reach basic explosion prevention as well as to diminish flammability risk in normal operation, storage, and transportation of materials. This study deals with the inerting effect on the explosion range for methane via grey entropy model, comparatively detected under the different inert gases of nitrogen (N2), argon (Ar), and carbon dioxide (CO2), which have various loading inerting concentrations: 10 (90 vol% air), 20 (80 vol% air) and 25 vol% (75 vol% air). The inert influences were determined via the experimental 20-L-apparatus investigations under 1 atm, 30 OC, combined with the grey entropy model, which is one of the most prevailingly used grey system theories for weighting analysis and decision-making of the fire and explosion assessment for practical operations. The results indicated that CO2 had better inerting capacity than the others, as derived from our grey entropy theoretical soft computing calculations. Through the combination of the grey entropy weighting analysis model and the flammability investigations in this study, the concluded decision-making was feasible and useful for the practical applications of inert gases for preventing fire and explosion hazards in relevant processes.  相似文献   

3.
The influence of additives of various chemical natures (CH4, N2, CO2, and steam) at a laminar burning velocity Su of hydrogen in air has been studied by numerical modelling of a flat flame propagation in a gaseous mixture. It was found that the additives of methane to hydrogen–air mixtures cause as a rule monotonic reduction in the Su value with the exception of very lean mixtures (fuel equivalence ratio ? = 0.4), for which a dependence of the laminar burning velocity on the additive's concentration has a maximum. In the case of the chemically inert additives (N2, CO2, H2O) the laminar burning velocity of rich near-limit hydrogen–air flames drops monotonically with an increase in the additive's content, but no more than 1.5 times, and the adiabatic flame temperature changes slowly in this case. In the case of methane as the additive, the laminar burning velocity is diminished approximately 5 times with an increase in the adiabatic flame temperature from 1200 to 2100 K. Deviations from the known empirical rule of the approximate constancy of the laminar burning velocity for near-limit flames are shown.  相似文献   

4.
The Maximum Experimental Safe Gap (MESG) is an important criterion to assess the propagation of flames through small gaps. This safety-related parameter is used to classify the flammable gases and vapors in explosion groups, which are fundamental to constructional explosion protection. It is used both, for the safe design of flameproof encapsulated devices as well as for selecting flame arresters appropriate to the individual application. The MESG of a fuel is determined experimentally according to the standard ISO/IEC 80079-20-1:2017 at normal conditions (20 °C, 1.0 bar) with air as oxidizing gas. The aim of this work is to investigate the effect of inert gas addition on the MESG in order to assess the effectiveness of inertization in constructional explosion protection. The term limiting experimental safe gap (SG) is used for the result of these measurements. The fuel-air mixtures (fuels: hydrogen, ethylene, propene, methane) used as representatives for the explosion groups in flame arrester testing were chosen and diluted with inert gas (nitrogen, carbon dioxide) before testing. The dependence of the limiting experimental safe gap on the total initial pressure, amount and nature of inert additive is discussed. The initial pressure was varied up to 2.0 bar to include increased pressure conditions used in flame arrester testing. Apart from the well-known reciprocal dependence on the initial pressure, the added inert gas results in an exponential increase of SG. This effect depends on the inertizing potential of the gas and is therefore different with nitrogen and carbon dioxide. The ranking of the fuels is the same as with MESG. As a result, various mixtures of the same limiting experimental safe gap can now be chosen and tested with an individual flame arrester to prove the concept of a constant and device-related limiting safe gap. The work was funded by BG-RCI in Heidelberg (PTB grant number 37056).  相似文献   

5.
The explosion characteristics of anthracite coal dust with/without small amount of CH4 (1.14 vol %) were investigated by using a 20 L spherical explosion apparatus with an emphasis on the roles of oxygen mole fraction and inert gas. Two methods based on overpressure and combustion duration time were used to determine the minimum explosion concentration (MEC) or the lower explosion limit (LEL) of the pure anthracite coal dust and the hybrid coal-methane mixtures, respectively. The experiment results showed that increasing oxygen mole fraction increases the explosion risk of coal dust: with increasing oxygen mole fraction, the explosion pressure (Pex) and the rate of explosion pressure rise ((dp/dt)ex)) increase, while MEC decreases. The explosion risk of anthracite dust was found to be lower after replacing N2 with CO2, suggesting that CO2 has a better inhibition effect on explosion mainly due to its higher specific heat. However, the addition of 1.14% CH4 moderates the inhibition effect of CO2 and the promotion effect of O2 on anthracite dust explosion for some extent, increasing explosion severity and reducing the MEC of anthracite dust. For hybrid anthracite/CH4 mixture explosions, Barknecht's curve was found to be more accurate and conservative than Chatelier's line, but neither are sufficient from the safety considerations. The experimental results provide a certain help for the explosion prevention and suppression in carbonaceous dust industries.  相似文献   

6.
The flammability characteristics of refrigerants are affected by environmental factors, making them prone to flammability and explosion accidents in cooling systems. In this paper, the flammability characteristics of R1234yf–air mixtures with N2 and CO2 were investigated comparatively at temperatures between 20 and 50 °C at 80% relative humidity. The lower and upper flammability limits of R1234yf were measured. The limiting oxygen concentration (LOC), critical flammable ratio (CFR), and critical flammable concentration (CFC) of the R1234yf–air mixtures with inert gases were investigated. The paper developed a linear formula between the flammability limit of R1234yf and the temperature. The changes in CFC with different temperatures were negligible for R1234yf. Furthermore, the mixed refrigerant had both non-flammability and the lowest vapor pressure when the CFR of the R1234yf/CO2 mixture was 2.9. The experimental results were used to propose a new prediction model to estimate the flammability limits of R1234yf. Finally, molecular simulation explained the effect of inert gases on the flammability of R1234yf from a microscopic point of view. The research aimed to provide valid evidence and data for preventing flammable and explosive refrigerant incidents.  相似文献   

7.
Experimental studies were done with a small pipe with a diameter of 0.043 m and a large pipe with a diameter of 0.49 m to demonstrate the flame propagation suppression with inertia isolation in a long duct. Tests were carried in an ignition section containing propylene/air mixture near stoichiometric concentration and generating a peak flame propagation speed of approximately 100 m/s. The ignition section is connected to a section filled with an inert gas, another section with flammable mixtures, and finally a sufficiently long, ambient section to accommodate flame propagation. The critical length of the inert gas section required for successful suppression of flame from the igniting the flammable section is found to be 0.6 m for CO2 and 0.9 m for N2 in the large pipe and 0.2 m for CO2 and 0.3 m for N2 in the small pipe. Additional tests with a 3 m of ignition section and peak flame propagation speed of 225 m/s showed that the critical length for successful suppression by CO2 is only increased slightly to 0.9 m, confirming that the suppression is a result of inertia isolation rather than inert gas dilution. Finally, application of the results in responding to large-scale leak into a long, underground duct is discussed.  相似文献   

8.
为准确掌握和预测多元可燃气体的爆炸极限,开展2种多元可燃气体爆炸极限的理论预测模型研究.第1种模型针对"多种可燃气体+多种惰性气体"在空气中或氧气中混合,基于求解可燃气体绝热火焰温度的总比热特性方法以及化学平衡反应中的贫燃料(富氧)反应,提出该多元可燃气体的爆炸下限预测模型;第2种模型针对"可燃气体+惰性气体+氧气"混...  相似文献   

9.
The explosion properties of alkane/nitrous oxide mixtures were investigated and were compared with those of the corresponding alkane/oxygen and alkane/air mixtures. The explosion properties were characterized by three parameters: the explosion limit, explosion pressure, and deflagration index. For the same alkane, the order of the lower explosion limits (LELs) of the mixtures was found to be alkane/oxygen  alkane/air > alkane/nitrous oxide. In addition, the mixtures containing nitrous oxide tended to exhibit higher explosion pressures than the corresponding mixtures containing oxygen under fuel-lean conditions. The Burgess–Wheeler law was also observed to hold for the mixtures containing nitrous oxide.  相似文献   

10.
准确地预测可燃混合气体的爆炸极限,对防止工业生产中时有发生的混合气体爆炸事故有着重大的意义。通过采用Gaseq软件计算CH4,C3H8,C2H4,C3H6,CH3OCH3和CO的绝热火焰温度(CAFT),分析初始温度对甲烷和丙烷混合气体(体积比1∶1)爆炸下限(LEL)的影响。结果表明:随着初始温度的升高,临界火焰温度基本不变,而LEL线性下降。使用计算绝热火焰温度法对不同比例的二元混合气体(体积比1∶1,3∶1,1∶3)以及三元混合气体(体积比1∶1∶1)的LEL进行预测,在选取的35组不同组份的混合气体中,LEL的预测值与文献值的平均绝对误差为0.081 8,平均相对误差为0.02。  相似文献   

11.
A novel composite inhibitor based on porous mineral materials and conventional flame retardant of ammonium polyphosphate (APP) is prepared to suppress the premixed methane/air explosion. Taking advantages of gas and powder inhibitor, N2 and the prepared composite inhibitor are combined to use. The suppression performance of N2-composite inhibitor on methane explosion is investigated on a 20-L spherical experimental explosion apparatus and the characteristic pressure data are obtained. The combined inhibition effects of N2 and the prepared composite inhibitor are greater than either acting alone. Thermal decomposition behavior and gaseous products of composite inhibitor are analyzed with thermogravimetric analysis and thermogravimetric-mass spectrometry, respectively. Based on physical and chemical actions, the inhibition mechanisms of N2-composite inhibitor system are proposed. This work provides a reference to prepare high-performance gas explosion inhibitor based on the synergism of binary or multiple components.  相似文献   

12.
Many industrial processes are run at non-atmospheric conditions (elevated temperatures and pressures, other oxidizers than air). To judge whether and if yes to what extent explosive gas(vapor)/air mixtures will occur or may be generated during malfunction it is necessary to know the safety characteristic data at the respective conditions. Safety characteristic data like explosion limits, are depending on pressure, temperature and the oxidizer. Most of the determination methods are standardized for ambient conditions. In order to obtain determination methods for non-atmospheric conditions, particularly for higher initial pressures, reliable ignition criteria were investigated. Ignition tests at the explosion limits were carried out for mixtures of methane, propane, n-butane, n-hexane, hydrogen, ammonia and acetone in air at initial pressures up to 20 bar. The tests have been evaluated according to different ignition criteria: visual flame propagation, temperature and pressure rising. It could be shown that flame propagation and occasionally self-sustained combustion for several seconds occurred together with remarkable temperature rise, although the pressure rise was below 3%. The results showed that the combination of a pressure rise criterion of 2% and a temperature rise criterion of 100 K seems to be a suitable ignition criterion for the determination of explosion limits and limiting oxidizer concentration at higher initial pressures and elevated temperatures. The tests were carried out within the framework of a R&D project founded by the German Ministry of Economics and Technology.  相似文献   

13.
When aluminum magnesium alloy dust floats in the air, a certain ignition energy can easily cause an accidental explosion. To prevent and control the occurrence of accidental explosions and reduce the severity of accidents, it is necessary to carry out research on the explosion suppression of aluminum magnesium alloy dust. This paper uses a vertical glass tube experimental device and a 20 L spherical explosive experimental device to carry out experimental studies on the suppression of the flame propagation and explosion overpressure of aluminum magnesium alloy dust with melamine polyphosphate (MPP) and Al(OH)3. With increasing MPP and Al(OH)3 concentrations, the flame brightness darkened, the flame velocity and propagation distance gradually decreased, and Pmax and (dp/dt)max decreased significantly. When the amount of MPP added reached 60%, the flame propagation distance decreased to 188 mm, which is a decrease of 68%, and the explosion overpressure decreased to 0.014 MPa, effectively suppressing the explosion of aluminum magnesium alloy dust. The experimental results showed that MPP was more effective than Al(OH)3 in inhibiting the flame propagation and explosion overpressure of the aluminum magnesium alloy dust. Finally, the inhibitory mechanisms of the MPP and Al(OH)3 were further investigated. The MPP and Al(OH)3 endothermic decomposition produced an inert gas, diluted the oxygen concentration and trapped active radicals to terminate the combustion chain reaction.  相似文献   

14.
The wood gasification process poses serious concerns about the risk of explosion. The design of prevention and mitigation measures requires the knowledge of safety parameters, such as the maximum explosion pressure, the maximum rate of pressure rise and the gas deflagration index, KG, at standard ambient temperature (25 °C) and pressure (1 bar) conditions. However, the analysis at specific process conditions is strongly recommended, as the explosion behavior of gas mixtures may be completely different.In the work presented in this paper, the explosion behavior of mixtures with composition representative of wood chip-derived syngas (CO/H2/CH4/CO2/N2 mixtures with and without H2O) was experimentally studied in a closed combustion chamber. Experiments were run at two temperatures, 300 °C and 10 °C, and at atmospheric pressure. Test conditions were requested by the safety engineering designer of an existing industrial-scale wood gasification plant. In order to identify the specific fuel–air ratios to be analyzed, thus reducing the number of experimental tests, a preliminary thermo-kinetic study was performed.Results have shown that the mixtures investigated can be classified as low-reactivity mixtures, the higher value of KG found (∼36 bar m/s) being much lower than the KG value of methane (55 bar m/s @ 25 °C).  相似文献   

15.
Hybrid mixtures – mixtures of burnable dusts and burnable gases – pose special problems to industries, as their combined Lower Explosion Limit (LEL) can lie below the LEL of the single substances. Different mathematical relations have been proposed by various authors in literature to predict the Lower Explosion Limit of hybrid mixtures (LELhybrid). The aim of this work is to prove the validity or limitations of these formulas for various combinations of dusts and gases. The experiments were executed in a standard 20 L vessel apparatus used for dust explosion testing. Permanent spark with an ignition energy of 10 J was used as ignition source. The results obtained so far show that, there are some combinations of dust and gas where the proposed mathematical formulas to predict the lower explosible limits of hybrid mixtures are not safe enough.  相似文献   

16.
The main risk factors from methane explosion are the associated shock waves, flames, and harmful gases. Inert gases and inhibiting powders are commonly used to prevent and mitigate the damage caused by an explosion. In this study, three inhibitors (inert gas with 8.0 vol% CO2, 0.25 g/L Mg(OH)2 particles, and 0.25 g/L NH4H2PO4 particles) were prepared. Their inhibiting effects on methane explosions with various concentrations of methane were tested in a nearly spherical 20-L explosion vessel. Both single-component inhibitors and gas–particle mixtures can substantially suppress methane explosions with varying degrees of success. However, various inhibitors exhibited distinct reaction mechanisms for methane gas, which indicated that their inhibiting effects for methane explosion varied. To alleviate amplitude, the ranking of single-component inhibitors for both explosion pressure (Pex) and the rate of explosion pressure rise [(dP/dt)ex] was as follows: CO2, NH4H2PO4 particles, and Mg(OH)2 particles. In order of decreasing amplitude, the ranking of gas‒particle mixtures for both Pex and (dP/dt)ex was as follows: CO2–NH4H2PO4 mixture, CO2‒Mg(OH)2 mixture, and pure CO2. Overall, the optimal suppression effect was observed in the system with the CO2–NH4H2PO4 mixture, which exhibited an eminent synergistic effect on methane explosions. The amplitudes of Pex with methane concentrations of 7.0, 9.5, and 11.0 vol% decreased by 37.1%, 42.5%, and 98.6%, respectively, when using the CO2–NH4H2PO4 mixture. In addition, an antagonistic effect was observed with CO2‒Mg(OH)2 mixtures because MgO, which was generated by the thermal decomposition of Mg(OH)2, can chemically react with water vapor and CO2 to produce basic magnesium carbonate (xMgCO3·yMg(OH)2·zH2O), thereby reducing the CO2 concentration in a reaction system. This research revealed the inhibiting effects of gas‒particle mixtures (including CO2, Mg(OH)2 particles, and NH4H2PO4 particles) on methane explosions and provided primary experimental data.  相似文献   

17.
New data about explosion regions with special focus on limiting oxygen concentrations for methyl propionate, methyl acetate, dimethyl carbonate with air in the presence of nitrogen, helium and carbon dioxide were determined at ambient initial pressure and 423 K. The measurements were executed according to EN 1839 method T. The changes of the explosion regions with temperature and type of inert gas were also modeled mathematically using an extended calculated adiabatic flame temperature profile (CAFTP) method. The shift of the explosion region boundaries with temperature when switching from nitrogen to carbon dioxide were reproduced well. For a switch to helium a good agreement could be reached only if the very high thermal conductivity of helium had been considered properly by using the Lewis number. This requires the knowledge of the respective Lennard-Jones parameters. The LOC of helium-containing mixtures can, however, be calculated with acceptable accuracy even if the Lennard-Jones parameters of the flammable substance are not known exactly by using reasonable estimations.  相似文献   

18.
Explosion flame propagation characteristics and overpressure distribution of low density polyethylene (LDPE) dust and ethylene hybrid mixture were investigated under N2 inerting conditions using a custom-designed 12 L cylindrical explosion tank. The results showed that a small amount of ethylene could promote the explosion characteristics of LDPE dust. N2 inerting had different inhibitory effects on the explosion flame of LDPE dust and its mixture with ethylene. The explosion overpressure strength of the LDPE dust/ethylene hybrid mixture decreased with increasing N2 concentration. The overall suppression effect of N2 on the explosion overpressure of the LDPE dust was better than that of the LDPE dust/ethylene hybrid mixture explosion. As the ethylene concentration increased from 0% to 2.5%, the limiting oxygen concentration decreased by 13% oxygen. This small amount of ethylene restricted the traditional inerting process. The study conclusions can provide further scientific basis for the inerting and explosion proofing design of production process equipment involving LDPE dust.  相似文献   

19.
A study of vented explosions in a length over diameter (L/D) of 2 in cylindrical vessel connecting with a vent duct (L/D = 7) is reported. The influence of vent burst pressure and ignition locations on the maximum overpressure and flame speeds at constant vent coefficient, K of 16.4 were investigated to elucidate how these parameters affect the severity of a vented explosion. Propane and methane/air mixtures were studied with equivalence ratio, Φ ranges from 0.8 to 1.6. It is demonstrated that end ignition exhibited higher maximum overpressures and flame speeds in comparison to central ignition, contrary to what is reported in literature. There was a large acceleration of the flame toward the duct due to the development of cellular flames and end ignition demonstrated to have higher flame speeds prior to entry into the vent due to the larger flame distance. The higher vent flow velocities and subsequent flame speeds were responsible for the higher overpressures obtained. Rich mixtures for propane/air mixtures at Φ = 1.35 had the greatest flame acceleration and the highest overpressures. In addition, the results showed that Bartknecht's gas explosion venting correlation is grossly overestimated the overpressure for K = 16.4 and thus, misleading the impact of the vent burst pressure.  相似文献   

20.
This paper presents a methodology for conducting a simplified gas-explosion analysis when there are uncertainties about the amount of fuel involved and the mode of combustion. The methodology is illustrated by a case study of an explosion of a cloud of hydrogen-selenide (H2Se), nitrogen and air. Hydrogen-selenide (H2Se) diluted with N2 is used in a reactor vessel to produce solar cells. An explosive mixture could be created if the reactor vessel failed and its contents mix with ambient air. Mixtures of 20% or 6% H2Se in N2 were considered as feedstock into the reactor. It was determined theoretically that an explosion involving either mixture would challenge the reactor room's integrity. However, it is unlikely that a local ignition will propagate in the dilute 6% H2Se mixture, because its adiabatic flame temperature is only 850 K; the 20% mixture is borderline flammable. Because of the proximity of personnel to the reactor room and the high toxicity of H2Se, any damage to the room boundary is considered unacceptable. To prevent accidental mixing of H2Se with air in the reactor, a nitrogen buffer was installed between the reactor vessel and the ambient air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号