首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work aimed to experimentally evaluate the effects of a carbon monoxide-dominant gas mixture on the explosion characteristics of methane in air and report the results of an experimental study on explosion pressure measurement in closed vessel deflagration for a carbon monoxide-dominant gas mixture over its entire flammable range. Experiments were performed in a 20-L spherical explosion tank with a quartz glass window 110 mm in diameter using an electric spark (1 J) as the ignition source. All experiments were conducted at room temperature and at ambient pressure, with a relative humidity ranging from 52 to 73%. The peak explosion pressure (Pmax), maximum pressure rise rate ((dp/dt)max), and gas deflagration index (KG) were observed and analyzed. The flame propagation behavior in the initial stage was recorded using a high-speed camera. The spherical outward flame front was determined on the basis of a canny method, from which the maximum flame propagation speed (Sn) was calculated. The results indicated that the existence of the mixture had a significant effect on the flame propagation of CH4-air and increased its explosion risk. As the volume fraction of the mixed gas increases, the Pmax, (dp/dt)max, KG and Sn of the fuel-lean CH4-air mixture (7% CH4-air mixture) increase nonlinearly. In contrast, addition of the mixed gas negatively affected the fuel-rich mixture (11% CH4-air mixture), exhibiting a decreasing trend. Under stoichiometric conditions (9.5% CH4-air mixture), the mixed gas slightly lowered Pmax, (dp/dt)max, KG, and Sn. The Pmax of CH4-air mixtures at volume fractions of 7%, 9.5%, and 11% were 5.4, 6.9, and 6.8 bar, respectively. The Sn of CH4-air mixtures at volume fractions of 7%, 9.5%, and 11% were 1.2 m/s, 2.0 m/s, and 1.8 m/s, respectively. The outcome of the study is comprehensive data that quantify the dependency of explosion severity parameters on the gas concentration. In the storage and transportation of flammable gases, the information is required to quantify the potential severity of an explosion, design vessels able to withstand an explosion and design explosion safety measures for installations handling this gas.  相似文献   

2.
The flame destabilization mechanism of hydrogen-propane-air mixture is firstly revealed. The effects of unstable flame formation on pressure rise rate and burning rate are quantified. Finally, the theoretical prediction of explosion pressure behavior is performed by considering diffusive-thermal and hydrodynamic instability. The results demonstrated that before the explosion pressure starts to climbe, as the propane fraction increases, the effective Lewis number of lean and stoichiometric mixture undergoes the transition from Leeff < 1.0 to Leeff > 1.0, the stabilizing effect of diffusive-thermal instability continues to reduce for the rich mixture. After the explosion pressure starts to climbe, the hydrogen-propane flame becomes more unstable, which is mainly attributed to enhancing hydrodynamic instability. The maximum rate of pressure rise and burning rate should be augmented by unstable flame formation, the flame instabilities must be considered in the explosion pressure evaluation.  相似文献   

3.
With the popularity of refrigerants in the process industries, the potential safety problems caused by the use of refrigerants have attracted worldwide attention as people have realized their inherent explosion characteristics of refrigerants. This paper studied the explosion characteristics of refrigerant 2, 3, 3, 3–tetrafluoropropene (R1234yf) at different concentrations and initial pressures based on a 20 L experimental apparatus. The experimental results illustrated the peak overpressure of R1234yf increased with the rise of initial pressure. At a constant ambient temperature of 25 °C, the maximum rate of pressure rise and deflagration index showed an N-shaped trend with the increase of the refrigerant concentration from 6.8% to 10%. The maximum rate of pressure rise and deflagration index increased first and then decreased with the increase of the refrigerant concentration at atmospheric pressure, while they presented an M-shaped trend at pressurization condition. The peak overpressure, the maximum rate of pressure rise, and deflagration index reached 0.742 MPa, 4.04 MPa s−1, and 1.1 MPa.m.s−1 with a refrigerant concentration of 7.6%, respectively, which were less than those of refrigerant propane and difluoromethane (R32) at the optimal concentration. Furthermore, R1234yf exhibited better safety performance compared with refrigerant R32 in the same flammability classification.  相似文献   

4.
On the basis of a systematic testwork with a number of different dusts, the explosion indices as determined within the 20 l sphere and with the ISO-VDI 1 m3 vessel have been compared. The repeatability has been assessed and since some systematic deviations appear a refined physical analysis of the explosion processes is developed. It appears in particular that the cube root law supposed to link both vessels is not verified. A striking illustration of this appears when a dust with a significant explosion severity inside the 20 l sphere is not even explosible in the larger vessel. It is strongly suggested that the ignition energy is forcing very significantly the explosion in the smaller vessel inducing several tens of Celsius degrees of preheating. It is shown also that the inner level of turbulence is decreasing very fast in the 20 l sphere during the flame development so that difficult-to-ignite mixtures would tend to burn at a lower combustion rate. It is further demonstrated that the major bias between the chambers can be explained and quantified with these elements. A correlation with the standard 1 m3 vessel and a grid of interpretation of the data is proposed.  相似文献   

5.
Accurate determination of explosion severity parameters (pmax, (dp/dt)max, and KSt) is essential for dust explosion assessment, identification of mitigation strategy, and design of mitigation measure of proper capacity. The explosion severity parameters are determined according to standard methodology however variety of dust handled and operation circumstances may create practical challenge on the optimal test method and subsequent data interpretation. Two methods are presented: a statistical method, which considers all test results in determination of explosion severity parameters and a method that corrects the results for differences of turbulence intensity. The statistical method also calculates experimental error (uncertainty) that characterises the experimental spread, allows comparison to other dust samples and may define quality determination threshold. The correction method allows to reduce discrepancies between results from 1 m3 vessel and 20-l sphere caused by difference in the turbulence intensity level. Additionally new experimental test method for difficult to inject samples together with its analysis is described. Such method is a versatile tool for explosion interpretation in test cases where different dispersion nozzle is used (various turbulence level in the test chamber) because of either specific test requirements or being “difficult dust sample”.  相似文献   

6.
To forestall, control, and mitigate the detrimental effects of aluminium dust, a 20-L near-spherical dust explosion experimental system and an HY16429 type dust-cloud ignition temperature test device were employed to explore the explosion characteristics of micron-sized aluminium powder under different ignition energies, dust particle sizes, and dust cloud concentration (Cdust) values; the minimum ignition temperature (MIT) values of aluminium powder under different dust particle sizes and Cdust were also examined. Flame images at different times were photographed by a high-speed camera. Results revealed that under similar dust-cloud concentrations and with dust particle size increasing from 42.89 to 141.70 μm, the MIT of aluminium powder increased. Under various Cdust values, the MIT of aluminium dust clouds attained peak value when concentrations enhanced. Furthermore, the increase of ignition energy contributed to the increase of the explosion pressure (Pex) and the rate of explosion pressure rise [(dP/dt)ex]. When dust particle size was augmented gradually, the Pex and (dP/dt)ex attenuated. Decreasing particle size lowered both the most violent explosion concentration and explosive limits.  相似文献   

7.
Deflagration explosions of coal dust clouds and flammable gases are a major safety concern in coal mining industry. Accidental fire and explosion caused by coal dust cloud can impose substantial losses and damages to people and properties in underground coal mines. Hybrid mixtures of methane and coal dust have the potential to reduce the minimum activation energy of a combustion reaction. In this study the Minimum Explosion Concentration (MEC), Over Pressure Rise (OPR), deflagration index for gas and dust hybrid mixtures (Kst) and explosive region of hybrid fuel mixtures present in Ventilation Air Methane (VAM) were investigated. Experiments were carried out according to the ASTM E1226-12 guideline utilising a 20 L spherical shape apparatus specifically designed for this purpose.Resultsobtained from this study have shown that the presence of methane significantly affects explosion characteristics of coal dust clouds. Dilute concentrations of methane, 0.75–1.25%, resulted in coal dust clouds OPR increasing from 0.3 bar to 2.2 bar and boosting the Kst value from 10 bar m s−1 to 25 bar m s−1. The explosion characteristics were also affected by the ignitors’ energy; for instance, for a coal dust cloud concentration of 50 g m−3 the OPR recorded was 0.09 bar when a 1 kJ chemical ignitor was used, while, 0.75 bar (OPR) was recorded when a 10 kJ chemical ignitor was used.For the first time, new explosion regions were identified for diluted methane-coal dust cloud mixtures when using 1, 5 and 10 kJ ignitors. Finally, the Le-Chatelier mixing rule was modified to predict the lower explosion limit of methane-coal dust cloud hybrid mixtures considering the energy of the ignitors.  相似文献   

8.
条形障碍物对瓦斯爆炸特性影响研究   总被引:3,自引:1,他引:2  
我国煤矿瓦斯爆炸事故不断出现,造成了巨大的人员伤亡和经济损失,在置障条件下研究瓦斯爆炸特性,对预防和减少瓦斯爆炸事故具有重要意义。利用水平管道式爆炸试验装置,研究密闭管道内条形障碍物的数量和阻塞率对管道内瓦斯最大爆炸压力、火焰速度、最大爆炸压力上升速率和爆炸指数的影响以及敞口状态的影响。研究表明:障碍物对瓦斯爆炸具有显著激励作用,管道内瓦斯最大爆炸压力、火焰速度、最大爆炸压力上升速率和爆炸指数均显著增大,随着障碍物数量和阻塞率的增加,激励作用越明显;敞口状态下管道内最大爆炸压力、最大爆炸压力上升速率和爆炸指数均显著减小,火焰持续传播。研究结果对防治煤矿瓦斯爆炸事故提供一定的理论支持。  相似文献   

9.
In the work presented in this paper, the explosion and flammability behavior of combustible dust mixtures was studied. Lycopodium, Nicotinic acid and Ascorbic acid were used as sample dusts.In the case of mixtures of two dusts, the minimum explosive concentration is reproduced well by a Le Chatelier's rule-like formula, whereas the minimum ignition energy is a linear combination of the ignition energies of the pure dusts.An unexpected behavior has been found in relation to the explosion behavior and the reactivity. When mixing Lycopodium and Nicotinic acid or Ascorbic acid, the rate of pressure rise of the mixture is much higher than the rate of pressure rise obtained by linearly averaging the values of the pure dusts (according to their weight proportions), thus suggesting that strong synergistic effects arise; but it is comparable to that of the most reactive dust in the mixture.The observed behavior seems to be linked to the presence of minerals in the Lycopodium particles which catalyze oxidation reactions of Nicotinic acid and Ascorbic acid, as suggested by TG analysis.In the case of mixtures of three dusts, a similar behavior is observed when the concentration of Lycopodium is twice that of the other two dusts.  相似文献   

10.
瓦斯爆炸事故给煤矿生产、国家经济发展以及人民的生命财产造成了巨大损失,因此,在置障条件下研究瓦斯爆炸特性,对预防和减少瓦斯爆炸事故具有重要意义。利用水平管道式气体爆炸实验装置,研究了螺旋形障碍物对瓦斯最大爆炸压力以及最大爆炸压力上升速率的影响。结果表明:螺旋形障碍物的存在对瓦斯爆炸的爆炸压力和最大压力上升速率有明显促进的影响,随螺旋形障碍物螺旋的增加,对最大爆炸压力和最大压力上升速率的激励作用越明显。  相似文献   

11.
Explosion venting is a frequently-used way to lower explosion pressure and accident loss. Recently, studies of vessel explosion venting have received much attention, while little attention has been paid to pipe explosion venting. This study researched the characteristics of explosion venting for Coal Bed Methane (CBM) transfer pipe, and proposed the way of explosion venting to chamber in order to avoid the influence of explosion venting on external environment, and investigated the effects of explosion venting to atmosphere and chamber. When explosion venting to atmosphere, the average explosion impulse 4.89 kPa s; when explosion venting to 0 MPa (atmospheric pressure) chamber, average explosion impulse is 7.52 kPa s; when explosion venting to −0.01 MPa chamber, explosion flame and pressure obviously drop, and average explosion impulse decreases to 4.08 kPa s; when explosion venting to −0.09 MPa chamber, explosion flame goes out and average explosion impulse is 1.45 kPa s. Thus, the effect of explosion venting to negative chamber is far better than that to atmospheric chamber. Negative chamber can absorb more explosion gas and energy, increase stretch of explosion flame, and eliminate free radical of gas explosion. All these can promote the effect of explosion venting to negative chamber.  相似文献   

12.
The explosion properties of alkane/nitrous oxide mixtures were investigated and were compared with those of the corresponding alkane/oxygen and alkane/air mixtures. The explosion properties were characterized by three parameters: the explosion limit, explosion pressure, and deflagration index. For the same alkane, the order of the lower explosion limits (LELs) of the mixtures was found to be alkane/oxygen  alkane/air > alkane/nitrous oxide. In addition, the mixtures containing nitrous oxide tended to exhibit higher explosion pressures than the corresponding mixtures containing oxygen under fuel-lean conditions. The Burgess–Wheeler law was also observed to hold for the mixtures containing nitrous oxide.  相似文献   

13.
The wood gasification process poses serious concerns about the risk of explosion. The design of prevention and mitigation measures requires the knowledge of safety parameters, such as the maximum explosion pressure, the maximum rate of pressure rise and the gas deflagration index, KG, at standard ambient temperature (25 °C) and pressure (1 bar) conditions. However, the analysis at specific process conditions is strongly recommended, as the explosion behavior of gas mixtures may be completely different.In the work presented in this paper, the explosion behavior of mixtures with composition representative of wood chip-derived syngas (CO/H2/CH4/CO2/N2 mixtures with and without H2O) was experimentally studied in a closed combustion chamber. Experiments were run at two temperatures, 300 °C and 10 °C, and at atmospheric pressure. Test conditions were requested by the safety engineering designer of an existing industrial-scale wood gasification plant. In order to identify the specific fuel–air ratios to be analyzed, thus reducing the number of experimental tests, a preliminary thermo-kinetic study was performed.Results have shown that the mixtures investigated can be classified as low-reactivity mixtures, the higher value of KG found (∼36 bar m/s) being much lower than the KG value of methane (55 bar m/s @ 25 °C).  相似文献   

14.
The obstacle structure in the vapor cloud has a significant influence on the gas explosion. Obstacles could not only lead to the acceleration of flame, but also they may occupy some space, thus affecting the amount of combustible gas. In this paper, a new two-step method was proposed to respectively study the effects of the obstacles amount and volume blockage ratio (VBR) on the gas explosion by using Computation Fluid Dynamic software AutoReaGas, and the obstacles in the vapor cloud were set to “Solid” instead of “Subgrid”. Based on the results and analysis, it is found that the peak overpressure and the maximum combustion rate rise with the increase of the number of obstacles for a single VBR, which indicated that the vapor cloud explosion of more obstacles was more dangerous for a single VBR. However, under a single number of obstacles, the peak overpressure and the maximum combustion rate increase firstly and then decrease as VBR increases and reach the highest at the VBR of 0.74, which indicated that the intensity of vapor cloud explosion reach a peak at a certain VBR in the middle instead of the largest. In addition, the existence and structure of obstacles have little effect on the size of explosion fireball when the size and concentration of combustible gas cloud are the same.  相似文献   

15.
A pilot scale interconnected vessels experiment system was established, and the closed and vented gas explosion characteristics in the system were studied, using 10% methane–air mixture. Regularity of pressure variation in vessels and flame propagation in linked pipes was analyzed. Furthermore, the effects of transmission style, ignition position, pipe length, and initial pressure on explosion severity were discussed. For the closed explosion: explosion in interconnected vessels presents strongly destructive power to secondary vessel, especially transmission from the big vessel to the small one; the worst ignition position is shifting from ignition in the interconnected pipe to the walls of the two vessels; as far as ignition in big vessel is concerned, the peak pressure in secondary vessel increases with the pipe length much faster than that for ignition in small vessel; the peak pressures in two vessels are approximate linear functions of initial pressure. For the vented explosion: the transmission style and interconnected pipe length have significant impacts on the effect of venting on the protection; in order to obtain the better venting effect, the use of a divergent interconnected pipe from the big vessel to the small one in industry is advised and it is necessary to reduce the interconnected pipe length as far as possible or install flame arrester in the interconnected pipe.  相似文献   

16.
The flammability of refrigerants is a major cause of refrigerant explosion incidents. Studying the explosion characteristics of refrigerants at different initial temperatures can provide significant benefits for solving the safety problems of refrigerants under actual working conditions. This paper studied the effects of the initial temperature and refrigerant concentration on the explosion characteristics of refrigerant 2, 3, 3, 3-tetrafluoropropene (R1234yf) at 0.1 MPa. The curves of explosion characteristics with different initial temperature revealed the same variation trend ranged from 25 °C to 115 °C. Specifically, as the refrigerant concentration was raised, the peak overpressure, the maximum rate of pressure rise, and laminar burning velocity increased initially and decreased afterwards, along with maximum values at the refrigerant concentration of 7.6%. When the refrigerant concentration was 7.6%, the peak overpressure declined exponentially with the initial temperature rise, while the maximum rate of pressure rise increased linearly. The laminar burning velocity calculated from the spherical expansion method indicated that the flame propagation was gradually accelerated by the increase of initial temperature, which coincided with the change of the maximum rate of pressure rise. Meanwhile, experiments and CHEMKIN simulation results demonstrated the effects of elevated temperature from 20 °C to 50 °C on the explosion limits of R1234yf. The lower explosion limit reduced and the upper explosion limit increased with rising initial temperature. In general, R1234yf exhibited moderate combustion and lower explosion risk, compared with traditional refrigerants.  相似文献   

17.
为研究抛光铝粉的爆炸危险和ABC粉体的抑爆特性,在对实验粉体粒径分布进行分析的基础上,采用20 L粉尘爆炸特性实验装置,分别对不同铝粉尘浓度、不同抑爆剂浓度条件下的爆炸特性参数进行测试。研究结果表明:在实验条件下,铝粉的爆炸下限为45 g/m3<C<60 g/m3;随铝粉浓度增加,爆炸烈度呈现出先增强后减弱的变化趋势,在浓度为400 g/m3时爆炸烈度最大。ABC抑爆剂能够有效抑制铝粉爆炸超压和爆炸反应进程,随着惰性粉体浓度的增加,抑制效果愈加明显,爆炸逐渐减弱。当ABC惰性粉体的质量占比增加到50%时,相较单一铝粉爆炸,反应过程时间由72 ms增加至785 ms,爆炸最大压力、最大压力上升速率分别下降了61.7%,89.5%;当ABC粉体质量占比为53%时,铝粉被完全惰化,未发生爆炸。  相似文献   

18.
To explore the inhibitory effects of CF3I and CO2 gas on the explosion pressure and flame propagation characteristics of 9.5% methane, a spherical 20 L experimental explosion device was used to study the effect of the gas explosion suppressants on the maximum explosion pressure, maximum explosion pressure rise rate and flame propagation speed of methane. The results indicated that with a gradual increase in the volume fraction of the gas explosion suppressant, the maximum explosion pressure of methane and maximum explosion pressure rise rate gradually decreased, and the time taken to reach the maximum explosion pressure and maximum explosion pressure rise rate was gradually delayed. At the same time, the flame propagation speed gradually decreased. Additionally, the time taken for the flame to reach the edge of the window and the time taken for a crack as well as a cellular structure to appear on the flame surface was gradually delayed. The fluid dynamics uncertainty was suppressed. The explosion pressure and flame propagation processes were markedly suppressed, but the flame buoyancy instability was gradually enhanced. By comparing the effects of the two gas explosion suppressants on the pressure and flame propagation characteristics, it was found that at the same volume fraction, trifluoroiodomethane was significantly better than carbon dioxide in suppressing the explosion of methane. By comparing the reduction rates of the characteristic methane explosion parameters at a volume fraction of 9.5%, it was observed that the inhibitory effect of 4% trifluoroiodomethane on the maximum explosion pressure was approximately 4.6 times that of the same amount of carbon dioxide, and the inhibitory effect of 4% trifluoroiodomethane on the maximum explosion pressure rise rate and flame propagation speed was approximately 2.7 times that of the same amount of carbon dioxide. The addition of 0.5%–1.5% trifluoromethane to 4% and 8% carbon dioxide can improve the explosion suppression efficiency of carbon dioxide. This enhancing phenomenon is a comprehensive manifestation of the oxygen-decreasing effect of carbon dioxide and the trifluoroiodomethane-related endothermic effect and reduction in key free radicals.  相似文献   

19.
为研究狭长管道油气爆炸流场分布特征规律,搭建了狭长管道油气爆炸实验系统 ,并在狭长密闭管道中进行了油气爆炸实验。通过采集爆炸超压值和火焰强度值并进行 分析,得到以下结论:随着初始油气体积分数的增大,管道沿线最大爆炸超压值和升压 速率均呈现先增大后减小的趋势,在1.75%时达到最大,并且初始油气体积分数越接近 1.75%,升压速率增大越快;根据管道沿线最大超压分布规律可将初始油气体积分数分 为1.25%~1.55%、1.55%~2.20%、2.20%~2.65%3个部分;管道末端出现二次爆炸现象,爆 炸超压变化曲线可分为点火延迟、一次爆炸、二次爆炸、振荡衰减4个阶段;火焰持续 时间随油气体积分数的增加先下降后上升,油气体积分数为1.75%时火焰持续时间最短 。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号