首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The inhibition effect of heptafluoropropane (CF3CHFCF3) on methane explosions under different inhibitor concentrations in a closed vessel was studied. A high-speed camera and a pressure sensor were adopted respectively to record flame propagation characteristics and pressure data. Results indicate that the relationship between flame propagation and pressure rising was correlated. As the equivalent ratio (ϕ)≤1, the pressure presented a trend of rising firstly and then decreasing with increasing CF3CHFCF3 concentration, and it was found that there existed a critical concentration for pressure decrease. As ϕ > 1, the pressure exhibited a decreasing trend. Although the pressure appeared to seemingly increase, the moment that the pressure began to rise (trise) and the moment that the maximum explosion overpressure appeared (tPmax) were obviously delayed. The average rate of pressure rise ((dP/dt)ave) was decreased as the concentration of CF3CHFCF3 increased. It indicates that CF3CHFCF3 can effectively reduce the explosion reaction rate. The critical concentration of CF3CHFCF3 for complete inhibition was determined. Meanwhile, the synergy of CF3CHFCF3-inert gas can improve the inhibition effect. Compared with CF3CHFCF3–N2, the synergy of CF3CHFCF3–CO2 presented a better inhibition effect, and the inhibition effect was increased with increasing inert gas concentration. And the mechanisms of physical and chemical effects on explosion inhibition were analyzed.  相似文献   

2.
Under study are the regimes of detonation propagation in channels with linear expansion filled with monodisperse mixtures of oxygen and ultrafine aluminum particles of various loading; the methods of numerical simulations are used. The detonation combustion of submicron aluminum particles is described within the semi-empirical model of reduced kinetics with due regard to the transition from the diffusion-limited regime of combustion to the kinetic one. Waves of both planar and developed cellular detonation are considered as initial conditions. The characteristics of the main flow regimes are obtained and described: the subcritical (detonation failure), critical (detonation failure in some part of the channel) and supercritical (continuous detonation propagation). The maps of flow regimes in suspensions of 200-nm – 400-nm particles are presented in the plane of parameters: the channel width, expansion angle. The obtained critical conditions are similar to those observed in the gas detonation. The critical channel width linearly depends on the expansion angle up to a first critical value (35°–38°). Behind the second critical value (50°), the channel width is independent on the expansion angle. Between these values, there is an interval of nonmonotonicity similar to the detonation of micro-sized suspensions of aluminum particles. The effect of particle loading on the critical conditions in poor mixtures appears in the form of a sharp increase in the critical channel width, if the mass concentration falls below 0.25.  相似文献   

3.
The Maximum Experimental Safe Gap (MESG) is an important criterion to assess the propagation of flames through small gaps. This safety-related parameter is used to classify the flammable gases and vapors in explosion groups, which are fundamental to constructional explosion protection. It is used both, for the safe design of flameproof encapsulated devices as well as for selecting flame arresters appropriate to the individual application. The MESG of a fuel is determined experimentally according to the standard ISO/IEC 80079-20-1:2017 at normal conditions (20 °C, 1.0 bar) with air as oxidizing gas. The aim of this work is to investigate the effect of inert gas addition on the MESG in order to assess the effectiveness of inertization in constructional explosion protection. The term limiting experimental safe gap (SG) is used for the result of these measurements. The fuel-air mixtures (fuels: hydrogen, ethylene, propene, methane) used as representatives for the explosion groups in flame arrester testing were chosen and diluted with inert gas (nitrogen, carbon dioxide) before testing. The dependence of the limiting experimental safe gap on the total initial pressure, amount and nature of inert additive is discussed. The initial pressure was varied up to 2.0 bar to include increased pressure conditions used in flame arrester testing. Apart from the well-known reciprocal dependence on the initial pressure, the added inert gas results in an exponential increase of SG. This effect depends on the inertizing potential of the gas and is therefore different with nitrogen and carbon dioxide. The ranking of the fuels is the same as with MESG. As a result, various mixtures of the same limiting experimental safe gap can now be chosen and tested with an individual flame arrester to prove the concept of a constant and device-related limiting safe gap. The work was funded by BG-RCI in Heidelberg (PTB grant number 37056).  相似文献   

4.
When coal and gas outburst occurs, high-speed gas flow and air shock wave with high kinetic energy could be created. In this paper, the formation process of outburst shock waves and gas flow has been analyzed firstly. Afterwards, the numerical simulation models of the roadways with right-angled intersection have been established, by which real-time simulation of the propagation of outburst gas flow and the process of gas transport has been conducted. Gas pressure, gas velocity and gas concentration can be simulated and shown. From analyzing the simulation results, qualitative and quantitative conclusions that the characteristics and patterns of the propagation and attenuation of outburst shock waves and gas flow can be arrived at. Finally, experimental models have been carried out to investigate the outburst shock waves and gas flow at the roadways with the similar shapes as the simulated ones. The results indicate that when shock wave and gas flow passes the intersection, most of the shock wave and gas flow will flow into the roadway of section opposite the intersection, and a little of it would flow into the roadway below the intersection. And turbulence will appear, shock wave reflects and diffracts at branches with more influence on the roadway below the intersection.  相似文献   

5.
为研究惰性气体抑制瓦斯爆燃火焰传播特性,在自行搭建的中尺度爆炸激波管道上,采用数据采集系统、压电式传感器、火焰传感器、同步控制系统和激光纹影测试系统,通过对比4种不同喷射压力(0.5,1.5,2.5,3.5 MPa)的实验工况,选用N2做为惰性介质时抑制火焰的传播特性与喷射压力密切相关,火焰传播速度随着喷射压力增加呈现先增加后减弱的趋势。研究结果表明:少量N2在管道中扩散,加剧了未反应预混气体的扰动状态,造成火焰阵面褶皱的卷吸能力增强,进而加速化学反应进程,促进预混气体燃烧;喷射压力为1.5 MPa时,火焰阵面拉升、变形最强,火焰传播速度提高,最高可达到250 m/s;喷射压力为3.5 MPa时,火焰阵面出现明显三维凹陷结构,运动发生明显滞后现象,火焰传播速度大幅度降低至5.4 m/s,惰性气体抑制火焰传播效果明显。  相似文献   

6.
In order to study a new leak detection and location method for oil and natural gas pipelines based on acoustic waves, the propagation model is established and modified. Firstly, the propagation law in theory is obtained by analyzing the damping impact factors which cause the attenuation. Then, the dominant-energy frequency bands of leakage acoustic waves are obtained through experiments by wavelet transform analysis. Thirdly, the actual propagation model is modified by the correction factor based on the dominant-energy frequency bands. Then a new leak detection and location method is proposed based on the propagation law which is validated by the experiments for oil pipelines. Finally, the conclusions and the method are applied to the gas pipelines in experiments. The results indicate: the modified propagation model can be established by the experimental method; the new leak location method is effective and can be applied to both oil and gas pipelines and it has advantages over the traditional location method based on the velocity and the time difference. Conclusions can be drawn that the new leak detection and location method can effectively and accurately detect and locate the leakages in oil and natural gas pipelines.  相似文献   

7.
Densities, viscosities and refractive indices of 4-diethylamino-2-butanol + water mixtures were measured over the entire concentration range of 0–1 mole fraction and temperature range from 298.15 to 343.15 K. Excess molar volumes, viscosity deviations, and molar refraction changes were calculated from the measurement results and correlated as a function of the mole fractions. Various models were used for correlation with the measured data. Out of these, the Redlich–Kister equation was the most suitable model that correlated best with experimental data. The percent absolute deviations obtained with this model were 0.03% for density, 0.88% for viscosity and 0.009% for refractive index.  相似文献   

8.
瓦斯爆炸灾害防治一直是我国煤矿安全研究的热点、难点。通过对国内外相关文献总结分析,从瓦斯抑爆装置、抑爆介质及抑爆机理3个方面综述了目前国内外矿井瓦斯抑爆技术及抑爆材料的研究现状,提出了未来的发展方向。研究结果表明:瓦斯抑爆技术的有效性和可靠性主要取决于抑爆介质的物理化学性质、控爆空间几何参数、爆炸特性参数和抑爆系统中爆炸探测方式等因素;结合瓦斯爆炸链式反应理论和探测技术的发展,研究应更多地关注抑爆过程的微观特性,揭示其详细的抑爆作用机理,为探寻新型高效、绿色抑爆材料提供更有力的理论支持。  相似文献   

9.
This study presents a numerical model to analyze the sudden failure of compressed natural gas (CNG) cylinder onboard a CNG vehicle. The model is developed using COMSOL. It accounts for the real gas effects, physical energy, and combustion of the flammable gas. The model is tested using experimental data.The study highlight compression energy as one of the serious concern. An unintentional rupture of a compressed cylinder filled with natural gas would generate a rapid energy release in the form of the pressure energy (blast). The release of energy and gas would cause rapid mixing and generate overpressure and may also cause flash fire. A detailed failure frequency analysis is also done to analyze the effectiveness of barriers. This study identifies critical points for the safe operation of the CNG system onboard a vehicle.  相似文献   

10.
Safety of people has been the most important concern since the onset of commercial use of Compressed Natural Gas1 as a novel type of vehicle fuel. Provided a car vessel bursts, irreversible consequences will surface. The most important hazard threatening people and their properties in CNG distribution stations is pressurized natural gas in station storage vessels and car vessels. Storage vessels are far from people; however, they may damage other properties such as pipes, valves, electrical equipment, and etc. Owing to the distance between storage vessels and the hive, the risk is not considered a big concern; on the contrary, car storage vessel is very close to the passengers sitting in the car and those standing around the car. The proximity heightens the risk as the consequences caused by vessel burst can be more catastrophic than the former condition. Taken together, the car CNG vessel burst may be regarded as the most hazardous event at CNG distribution centers. It is believed that modeling the mentioned events can illustrate risky conditions. The present study was formulated in order to model one of such accidents occurring in Azad-Shahr in the winter 2010. The obtained results provided useful points and recommendations like the minimum safe distance from rupture center depending on such outcomes as overpressure, types of fire, or toxic release. The recommendations provided by the present study can prevent people from calamitous events and they can be adopted so as to reduce severity of possible events.  相似文献   

11.
Toxic gas-containing flammable gas leak can lead to poisoning accidents as well as explosion accidents once the ignition source appears. Many attempts have been made to evaluate and mitigate the adverse effects of these accidents. All these efforts are instructive and valuable for risk assessment and risk management towards the poisoning effect and explosion effect. However, these analyses assessed the poisoning effect and explosion effect separately, ignoring that these two kinds of hazard effects may happen simultaneously. Accordingly, an integrated methodology is proposed to evaluate the consequences of toxic gas-containing flammable gas leakage and explosion accident, in which a risk-based concept and the grid-based concept are adopted to combine the effects. The approach is applied to a hypothetical accident scenario concerning an H2S-containing natural gas leakage and explosion accident on an offshore platform. The dispersion behavior and accumulation characteristics of released gas as well as the subsequent vapor cloud explosion (VCE) are modeled by Computational Fluid Dynamics (CFD) code Flame Acceleration Simulator (FLACS). This approach is concise and efficient for practical engineering applications. And it helps to develop safety measures and improve the emergency response plan.  相似文献   

12.
为了解决普通数学模型难以准确描述瓦斯抽采管道内流体的流动状态问题,提出了以元胞自动机模型为基础的瓦斯抽采管道漏点定位模型。根据元胞自动机在空间和时间上离散化的特性来演化管道流体在时空上的连续变化,将管径变化、管壁粗糙度、管构异件种类和数量以及温度等参数沿管道进行离散化,利用元胞自动机理论以及管道两端的信号对管道沿线压力和流量等参数变化进行预测,以判断泄漏的发生和漏点定位。通过实验验证,该方法能提高漏点定位精度。  相似文献   

13.
煤矿主要采用隔爆水棚或岩粉棚来抑制瓦斯爆炸火焰传播,但此类技术仅针对一次性瓦斯爆炸,而缺乏对多次及连续瓦斯爆炸的有效阻隔爆手段。仅注重对燃烧波的淬熄作用,对造成很大破坏的冲击波的衰减效果不足。多孔介质的淬熄火焰和衰减冲击波的效能已得到国内外专家的重视,实验研究了多层丝网和多孔材料如泡沫铝和泡沫陶瓷的阻隔爆效果。泡沫陶瓷作为一种多孔介质,具有开孔率大、耐高温、抗冲击力强的优点。理论分析和实验研究表明,由于壁面的多次撞击效应,多孔介质可以有效地销毁瓦斯燃烧化学反应产生的自由基数量,抑制化学反应的放热,使化学反应不能自持进行,进而淬熄燃烧火焰传播;可以大幅衰减瓦斯爆炸的冲击波强度,起到同时淬熄燃烧火焰和衰减冲击波的作用。多孔介质有望成为煤矿井下一种新型的瓦斯爆炸阻隔爆材料和方法。  相似文献   

14.
天然气集输站泄漏监控系统研究   总被引:1,自引:0,他引:1  
为克服目前天然气集输站站控系统存在的主要技术问题,探讨了建立泄漏监控安全系统的技术要求.该系统应用负压波检漏技术、模式识别技术和虚拟仪器技术,实现了.对天然气泄漏的信号检测、处理、传输和实时动态显示等.借助于这些技术开发的天然气泄漏监控系统,具有数据处理准确可靠,精度高,误报率低等特点.通过该系统,可以及时获取相关参数和信息,实现早期预警,降低天然气泄漏的事故风险.  相似文献   

15.
基于激波理论的新兴煤矿煤与瓦斯突出事故研究   总被引:1,自引:0,他引:1  
通过分析新兴煤矿煤与瓦斯突出事故,发现在事故中由于煤与瓦斯突出事故诱发了激波的生成,瞬间产生的巨大超压,引起风流逆向,大量瓦斯随逆向风流从突出地点扩散传播至二水平,接触卸载巷电机车架空线所产生的电火花,从而引发瓦斯爆炸事故。提出了突出激波对事故的影响并分析了突出激波的形成及其破坏作用,研究了影响突出激波破坏作用的影响因素,得出参与突出的瓦斯量和瓦斯压力是影响激波强度的关键因素。有助于了解突出后的气流动力演化规律,并为煤与瓦斯突出事故的防灾、救灾措施的制定以及提高矿井的抗灾能力提供了参考。  相似文献   

16.
为了实现瓦斯与煤自燃两大灾害的联合防治,首先对布置高抽巷条件下瓦斯与遗煤自燃多因素相互影响关系进行了理论分析和归纳总结。结合淮南潘二煤矿11223高瓦斯易自燃工作面,建立了带有高抽巷的物理模型,利用UDF编译了本煤层与邻近层瓦斯涌出源项、采空区三维孔隙率和低温条件下煤氧化反应氧气消耗速率。在此基础上,分析了高抽巷布置参数和抽采参数以及工作面风量对高抽巷瓦斯抽采效果和采空区自燃带分布相互影响的规律。结果表明,当工作面风量为2 000 m3/min,高抽巷布置在顶板上方40 m时,高抽巷瓦斯抽采浓度和纯量分别达32.3%和29.07 m3/min,占总瓦斯涌出量的69.71%,同时能满足实际防火的要求。研究结果可为类似条件下高抽巷最佳施工与抽采参数提供借鉴。  相似文献   

17.
生产或使用煤气的工业企业常常需要带气抽堵盲板和开孔接管作业。此类特殊作业存在中毒、着火、爆炸的危险性,为了安全、高效地实施此类作业,本文结合企业15年安全作业的实践,系统地总结了作业的方案制定、主要准备工作、作业过程的控制等方面措施和内容,并总结了相关安全技术问题的一些做法和体会。  相似文献   

18.
在可燃气体的输送、贮存、加工和使用过程中,容易发生可燃气体的燃烧和爆炸事故。文中基于有限体积方法,采用五阶WENO格式进行左右状态量的重构后,利用ROE格式进行空间离散,自行开发程序对甲烷氧气的气相爆轰波传播过程进行了数值研究。计算结果表明:在CH4质量分数为10%的混合气体中,高温高压气团可诱导气相发生爆轰,爆轰波以2133.3 m/s的速度传播。在带有障碍物的约束空间内,文中分析了障碍物不同高度、不同间距条件下爆轰波传播时波的绕射、马赫反射等现象,给出障碍物表面压力随时间变化历程和冲量值,揭示波与障碍物的相互作用机理以及由此引发流场的变化规律,为有效地控制可燃气体的燃烧速率、防治爆炸灾害的发生提供理论依据。  相似文献   

19.
在煤矿安全事故中,破坏程度最严重的事故之一就是瓦斯爆炸,而瓦斯爆炸冲击波及火焰锋面可能会二次点爆其他位置积聚瓦斯,加速火焰锋面及冲击波传播,并能产生更高的超压,造成更大的人员伤亡及财产损失。借助详细反应机理GRI Mech 3.0,基于开源化学动力学软件Cantera,研究冲击波强度、瓦斯体积分数和冲击波及高温耦合条件下对瓦斯爆炸特性的影响。结果显示,冲击波诱导瓦斯爆炸中,点火延迟时间随着瓦斯体积分数的增大而出现增大现象,随冲击波强度的增大而降低;同时分析了二氧化碳、一氧化碳和一氧化氮致害物质的浓度随瓦斯体积分数、冲击波强度和冲击波及高温耦合条件下的变化情况。  相似文献   

20.
陆上油田油气集输站场安全现状评价探讨   总被引:7,自引:0,他引:7  
陆上油田油气集输站场安全现状评价的目的是根据该类站场安全管理和设施设备运行现状,查找出生产运行过程中各个系统存在的事故隐患,并提出针对性、技术可行性、经济合理性的安全对策措施建议。本文从安全管理和安全技术方面对油气集输站场安全现状评价的重点、存在的主要隐患、隐患产生的主要原因进行了阐述,对于加强油气集输站场的安全管理、生产过程中的安全运行和隐患治理资金的合理投入具有一定的现实意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号