首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
This article introduces a method for assessing health and safety management systems (MAHS) that has two innovative characteristics: (a) it brings together the three main auditing approaches to health and safety (HS) – the structural approach (which assesses the system prescribed), the operational approach (which assesses what is really happening on the shop-floor) and the performance approach (which assesses the results of performance indicators); (b) it emphasizes the resilience engineering perspective on HS, which takes into consideration four major principles (flexibility, learning, awareness, and top management commitment). Such principles underlie seven major assessment criteria, which in turn are divided into items (e.g. hazard identification from a resilience perspective is an item that belongs to the criteria of production processes). The items are sub-divided into statements, which are the requirements that should be assessed based on interviews, analysis of documents and direct observations. Within the 112 requirements proposed, 38 of them have clear links with at least one out of the four resilience engineering principles adopted. The remaining requirements are based on traditional assumptions underlying the so-called best practices of HS management. The results of the assessment for each item are expressed by a score on a scale of compliance with the established requirements, ranging from 0% to 100%. The specific score within that scale is obtained from tables used to assess applications for the Brazilian national quality award. The MAHS was tested in a case study that was carried out in a factory that manufactures automobile exhaust systems, located in Brazil.  相似文献   

2.
In chemical industrial areas, technological accidents triggered by natural events (Natech events) may escalate. Complex cascading multi-hazard scenarios with high uncertainties may be caused. Resilience is an essential property of a system to withstand and recover from disruptive events. The present study focuses on the change of the resilience level due to (possible) interactions between cascading hazards, chemical installations and safety barriers during the dynamic evolution of fire escalations triggered by a natural hazard (certain cascading multi-hazard scenarios). A quantitative resilience assessment method is developed to this end. The state transition of a system facing accidents in the context of resilience is explored. Moreover, the uncertainties accompanying an accident evolution are quantified using a Dynamic Bayesian Network, allowing a detailed analysis of the system performance in different time steps. System resilience is measured as a time-dependent function with respect to the change of system performance. The applicability of the proposed methodology is demonstrated by a case study, and the effects of different configurations of safety barriers on improving resilience are discussed. The results are valuable to support disaster prevention within chemical industrial areas.  相似文献   

3.
The reliability issue in complex industrial systems such as oil, gas, petrochemical companies, nuclear and aviation industries has been of great importance. Resilience engineering (RE) is a new attitude toward the improvement of safety and reliability in the stated systems. One of the challenges a resilient system might face is the gap between work as imagined by managers and work as actually done by operators. This study will introduce a new framework named integrated resilience engineering (IRE) as a result of developing the concept of RE. The data used in this research have been obtained by means of questionnaire from a petrochemical company. Thereafter, the efficiency of operators and managers are calculated in RE and IRE frameworks through data envelopment analysis (DEA) approach. Then, the gaps between managers and operators are analyzed in two frameworks. The results are indicative of a significant growth in the number of efficient operators and managers in IRE framework compared to RE framework. Besides, the efficiency mean of managers and operators in IRE framework has experienced the growth of 1.8% and 5% compared to RE framework, respectively. The efficiency gap between managers and operators in IRE framework has also enjoyed the improvement of 88% compared to RE framework. Generally, it can be said that the suggested items of this research has led to the betterment of managers and operators’ efficiency and of the efficiency gap between them. Therefore, these items can improve the resilience and safety of complex systems. The results of Spearman test show that there is a strong direct correlation between the DEA results in two frameworks. This is the first study that examines the efficiency gap between operators and managers based on the RE principles and by means of DEA approach.  相似文献   

4.
Natech events (Natural Hazard Triggering Technological Disasters) are industrial accidents caused by natural events such as hurricanes, floods, earthquakes, tsunamis, and so on. In recent decades, the probability of these events occurring has increased, activating the interest of researchers in the study of new methods of risk analysis to prevent and mitigate possible damage to people, the environment, and processing facilities. On the other hand, the concept of multi-hazard is summarized in the combination of two or more threat factors manifested in isolated, simultaneous manner, or by chain reaction, to produce a trigger event of a disaster, where hazardous events can be one or more natural events. Considering that, it is essential to know the progress in risk analysis for Natech events, to identify the gaps for future research. Therefore, in this paper, a systematic review of the Natech events literature with single and multi-hazard approaches was developed. The review was conducted by searching the Science Direct, Web of Science, and Scopus databases for scientific documents. Subsequently, the words Natech and Multi-hazard were taken as keywords, and 208 results were obtained. Then, some management documents were consulted in international organizations to compare academic literature and industrial risk management. In conclusion, the risk analysis methods revised are specific to a particular hazard and apply mainly to earthquakes, floods, and lightning. Regarding a multi-hazard approach, the methods focus on risk mitigation in urban areas without taking into account Natech risk. In the case of industrial risk assessment, some methodologies were found that briefly consider Natech risk in risk assessment processes in industry.  相似文献   

5.
Traditional risk assessment approaches mainly focus on the pre-failure scenarios with certain information. For complex systems, the scope of risk assessment needs to be extended to include the post-failure phase; because the emerging hazards of these systems cannot be wholly identified and are usually highly uncertain. Thus, resilience assessment needs to be investigated. Most of the existing literature quantify resilience based on a system's performance loss caused by disruptions. These studies fail to assess the probability of a system to sustain or restore to a normal operational state after disruptions occur, how this probability changes with time, and how fast the system can be restored. The dynamic and probabilistic characteristics of resilience must be considered in systemic resilience assessment, in which the engineered system, human and organizational factors, and external disruptions are considered. This paper aims to develop a dynamic Bayesian network (DBN)-based approach to the probabilistic assessment of the system resilience by incorporating temporal processes of adaption and recovery into the analysis of system functionality. The proposed method also provides a new way to define resilience in terms of the probability of system functionality change during and after a disruption. A case study on the Chevron refinery accident is used to demonstrate the applicability of the proposed methodology.  相似文献   

6.
Ethylene treaters are widely used in the petrochemical industry to remove impurities from ethylene feedstock imported from pipeline networks or storage caverns. The safety concerns of dense phase ethylene treaters due to the reactive and highly flammable nature of ethylene are well known and studied. Under certain conditions, ethylene may self-polymerize and decompose violently with heat release. Under other conditions, ethylene will auto-refrigerate, generating cold liquids that may cause potential brittle fracture hazards. Therefore, dense phase ethylene treaters present design challenges with the unique combination of high temperature decomposition and cold temperature brittle fracture hazards.Due to these safety concerns, it is important to select the appropriate engineering design options for dense phase ethylene treaters and the associated regeneration facilities. Totally automated treater regeneration systems add complexity and instrument maintenance requirements while manually operated systems rely heavily on operator training and procedures. Unfortunately, little or no information or design guidance is available from published research findings in the literature on the evaluation and risk assessment of current industrial design options and practices for dense phase ethylene treaters.This paper presents a systematic risk assessment method to evaluate the engineering design and safe operation options for dense phase ethylene treaters. The proposed risk assessment method integrates human factors task analysis into the traditional HAZOP, LOPA and fault tree analysis to allow evaluation of automated, manual and hybrid approaches with a goal of selecting and optimizing design options to ensure plant safety. This approach provides a realistic assessment of the operational risk and allows identification of fit-for-purpose risk reduction. Applying this systematic risk assessment approach, a simpler and more cost effective design solution can be justified, thereby avoiding the need for a high integrity protective system.  相似文献   

7.
In recent years, the global demand for liquefied natural gas (LNG) as an energy source is increasing at a very fast rate. In order to meet this demand, a large number of facilities such as platforms, FPSO (floating production, storage and offloading), FSRU (floating storage and regasification unit) and LNG ships and terminals are required for the storage, processing and transportation of LNG. Failure of any of these facilities may expose the market, companies, personnel and the environment to hazards, hence making the application of risk analysis to the LNG sector a very topical issue throughout the world. To assess the risk of accidents associated with LNG facilities and carriers, various risk analysis approaches have been employed to identify the potential hazards, calculate the probability of accidents, as well as assessing the severity of consequences. Nonetheless, literature on classification of the risk analysis models applied to LNG facilities is very limited. Therefore, to reveal the holistic issues and future perspectives on risk analysis of LNG facilities, a systematic review of the current state-of-the-art research on LNG risk analysis is necessary. The aim of this paper is to review and categorize the published literature about the problems associated with risk analysis of LNG facilities, so as to improve the understanding of stakeholders (researchers, regulators, and practitioners). To achieve this aim, scholarly articles on LNG risk analysis are identified, reviewed, and then categorized according to risk assessment methods (qualitative, semi-qualitative or quantitative; deterministic or probabilistic; conventional or dynamic), tools (ETA, FTA, FMEA/FMECA, Bayesian network), output/strategy (RBI, RBM, RBIM, facility siting, etc.), data sources (OREDA handbook, published literature, UK HSE databases, regulatory agencies' reports, industry datasets, and experts’ consultations), applications (LNG carriers and LNG fuelled ships, LNG terminals and stations, LNG offshore floating units, LNG plants), etc. Our study will not only be useful to researchers engaged in these areas but will also assist regulators, policy makers, and operators of LNG facilities to find the risk analysis models that fit their specific requirements.  相似文献   

8.
工业设施易受攻击性评价方法研究   总被引:4,自引:0,他引:4  
9.11事件以来,恐怖袭击的威胁引起各国政府、媒体和公众的广泛关注,恐怖袭击的风险研究成为安全科学的新课题.工业设施,特别是化学物质和能量聚集的工业设施,由于潜在的失控后果的严重性,遭恐怖袭击的威胁更大.本文基于恐怖袭击目标选择与工业设施某些固有特征的相关性,从攻击者的角度分析工业设施固有特征中影响其目标效用的诸因素,建立工业设施易受攻击性评价方法.  相似文献   

9.
When a natural disaster occurs, it may damage multiple industrial facilities in a certain area at the same time, and the resulting Natech events may have an impact on the surrounding industrial facilities, generating coupling risk. In this study, the assessment of Natech events coupling risk is conducted using the method of correlated multi-criteria decision-making, and the knowledge of fuzzy measures is introduced to solve the uncertainty problem in Natech coupling risk. Natech Coupling Risk Index is constructed to involve physical and functional facilities. The concept of equivalent population is proposed to compare the risks generated by physical facilities and functional facilities. And economic indicators are added to calculate the comprehensive risk value. The purpose of this contribution is to enable local government managers to use their expertise and resources and the existing risk assessment of the plants themselves and rely on the scoring of experts limitedly to quickly and easily identify potential high Natech risk areas. In the calculation process of coupling risk, the government can also take the lead to promote information communication between different plants and other industrial subjects. The proposed method was applied in a realistic chemical industry area in Guangzhou, China and in a hypothetical town. The result shows that the physical risk may be transferred to the population and economy through the coupling between industrial facilities and the functional link between functional facilities and population and economy.  相似文献   

10.
Safety barriers include physical and non-physical means in different industries for preventing the occurrences of hazardous events and mitigating the consequences in case they have occurred. After clarifying the relevant terminologies, this article reviews the literature in the domain of safety barriers in the recent decade, and categorizes these studies into barrier theory, barrier engineering and barrier management. Classifications of barriers, performance measures, modeling approaches and data-driven analysis for safety barriers are reviewed as parts of barrier theories. In the engineering section, the research advances are presented in accordance with design for reliability and safety, test and maintenance strategies, responses to dependent failures, and diagnosis and prognosis of degradations. Then, project and process management, human and organizational factors, and standardization and compliance management of safety barriers are summarized. Based on the review of literature, research perspectives on safety barriers for resilience, digital safety, security of barriers, utilizing data, and dealing with intelligence, are highlighted and potential challenges are mentioned. This study is therefore expected to be beneficial to the researchers of system and safety engineering, with systematically streamlining and innovatively categorizing the recent findings and insights.  相似文献   

11.
12.
13.
Occupational health and safety (OHS) represents an important field of exploration for the research community: in spite of the growth of technological innovations, the increasing complexity of systems involves critical issues in terms of degradation of the safety levels. In such a situation, new safety management approaches are now mandatory in order to face the safety implications of the current technological evolutions. Along these lines, performing risk-based analysis alone seems not to be enough anymore. The evaluation of robustness, antifragility and resilience of a socio-technical system is now indispensable in order to face unforeseen events. This article will briefly introduce the topics of Safety I and Safety II, resilience engineering and antifragility engineering, explaining correlations, overlapping aspects and synergies. Secondly, the article will discuss the applications of those paradigms to a real accident, highlighting how they can challenge, stimulate and inspire research for improving OHS conditions.  相似文献   

14.
对全国范围内石化、化工、包装印刷、工业涂装4个重点行业的VOCs自动监控设施的安装、运行和管理等情况进行调研、分析。研究发现,重点行业VOCs自动监控设施存在覆盖率不足、规范化不够、监测结果比对难、管理应用少等问题,并提出了细化自动监控设施安装要求、规范仪器市场秩序、提高自动监控质量、完善自动监控技术规范和标准、强化以用促管等建议,旨在为规范指导VOCs自动监控设施的建设、运行和提高VOCs自动监控数据的质量提供技术支撑。  相似文献   

15.
This article presents an evaluation and proposals for improving a method for assessing health and safety management systems. This method takes resilience engineering (RE) as its underlying philosophy and was originally devised and tested in a case study of a manufacturing plant. Four main changes were proposed in comparison with the original version of the method: (a) a framework for assessing the use of RE principles more systematically; (b) guidelines for developing an action plan as a result of the assessment; (c) re-organization of the data collection tools in order to increase their ease of use; and (d) procedures for facilitating the assignment of scores to the items assessed. The evaluation of the method, which was not restricted to the changes described in this article, was conducted based on seven criteria for evaluating safety assessment tools. Both the evaluation and the impact of the changes are discussed based on a case study, in which the method was applied in a company that distributes electricity.  相似文献   

16.
A new approach to quantitative assessment of reliability of passive systems   总被引:3,自引:0,他引:3  
The objective of this paper is to show how probabilistic reliability can be assessed for complex systems in the absence of statistical data on their operating experience, based on performance evaluation of the dominant underlying physical processes. The approach is to distinguish between functional and performance probabilities when dealing with the quantification of the overall probability of a system to perform a given function in a given period of time (reliability). In the case of systems where sufficient statistical operating experience data are available, one can focus the quantitative evaluation entirely on the assessment of the functional probability for a given active item (e.g. a pump) by assuming that the specification, layout, construction and installation is such that the item is providing the assigned performance, e.g. in the form of generating the required flow rate. This is how traditional probabilistic safety assessments (PSAs) focus the reliability analysis for the various safety features on the calculation of values for the availability per demand. In contrast, for various systems relevant in advanced technical applications, such as passive safety features in innovative reactor designs, it is essential to evaluate both functional and performance probabilities explicitly and combine the two probabilities later on. This is of course due to the strong reliance of passive safety systems on inherent physical principles. In practice, this means that, for example, in case of a passive cooling system based on natural circulation of a given medium, one has to evaluate and to assess the probability to have a medium condition and a flow rate such that a cladding temperature, represented by a probability distribution, can be hold at a required level. A practical example of this method is given for the case of the reliability assessment of a residual passive heat removal system. General conclusions are drawn regarding reliability estimation of complex, interconnected systems in the absence of statistical performance data, such as for infrastructures.  相似文献   

17.
Young practicing chemical engineers must be able to operate safely in an industrial setting. Therefore, chemical process safety education is essential for undergraduate chemical engineers and ABET (the University Accreditation Board) supports this initiative by requiring that university graduates understand the hazards associated with chemical processes. One way to understand the hazards associated with processes is to conduct a process hazard analysis. This analysis can be conducted in an experiential learning environment by collaborating with an industrial partner or by utilizing facilities on the university campus. In this environment students are able to see and interact with the processes under normal operating conditions. Utilizing industrial or research mentors allows students to receive formative feedback as they analyze the process. In addition, these process hazard analyses require students to practice “soft skills” such as teamwork, problem solving, and oral and written communication which are essential work place skills. This paper reviews teaching hazard analysis methods to chemical engineering students at the undergraduate and graduate levels. Covered are examples of how students are introduced to the checklist and bowtie analysis methods, and the conduction of a HAZOP. Examples of the different resources that can be utilized are described. Ultimately, from these experiences, students are more prepared to enter the chemical process industries with first-hand knowledge of how to conduct various hazard analyses before reaching their place of employment.  相似文献   

18.
With the development of increasingly complex processes and technologies in chemical and manufacturing industries, Process Safety Management (PSM) has been globally recognized as the primary tool for operating companies to reduce process accidents on their industrial sites and the risks posed to their employees and surrounding communities. Yet, industrial facilities are often interdependent and collocated with others. Recognizing this, regional authorities are also applying PSM principles to reduce the cumulative incidents associated with high density industrial areas and the multiplicative risks posed to broader communities. This paper compares Strathcona County Emergency Service (SCES) in Alberta, Contra Costa County Health Service Hazard Material Programs (CCCHSHMP) in California, and Technical Standards & Safety Authority (TSSA) in Ontario and their PSM systems to provide practical recommendations to improve SCES's system. Four aspects of PSM are considered: regulation and guidance, auditing and inspection, annual performance indicators, and public participation. Based on the results of this comparison, we recommend that SCES develop comprehensive PSM regulations based on CSA Z767-17 PSM including clear instructions for assessing technologies and methodologies for consequence analysis. Both worst-case scenarios and alternative scenarios need to be considered as well as the domino effect of primary accidents. Furthermore, regular audits and inspections will ensure compliance with PSM regulations while helping the design of planning, performing, and following-up strategies to ensure effectiveness. In addition, we suggest the use of lagging and leading performance indicators to evaluate the performance of the PSM program. Finally, we recommend using advisory councils or commissions to increase public participation and ensure the representation of stakeholders' perspectives with the PSM system.  相似文献   

19.
Abstract

Objective: With the overall goal to harmonize prospective effectiveness assessment of active safety systems, the specific objective of this study is to identify and evaluate sources of variation in virtual precrash simulations and to suggest topics for harmonization resulting in increased comparability and thus trustworthiness of virtual simulation-based prospective effectiveness assessment.

Methods: A round-robin assessment of the effectiveness of advanced driver assistance systems was performed using an array of state-of-the-art virtual simulation tools on a set of standard test cases. The results were analyzed to examine reasons for deviations in order to identify and assess aspects that need to be harmonized and standardized. Deviations between results calculated by independent engineering teams using their own tools should be minimized if the research question is precisely formulated regarding input data, models, and postprocessing steps.

Results: Two groups of sources of variations were identified; one group (mostly related to the implementation of the system under test) can be eliminated by using a more accurately formulated research question, whereas the other group highlights further harmonization needs because it addresses specific differences in simulation tool setups. Time-to-collision calculations, vehicle dynamics, especially braking behavior, and hit-point position specification were found to be the main sources of variation.

Conclusions: The study identified variations that can arise from the use of different simulation setups in assessment of the effectiveness of active safety systems. The research presented is a first of its kind and provides significant input to the overall goal of harmonization by identifying specific items for standardization. Future activities aim at further specification of methods for prospective assessments of the effectiveness of active safety, which will enhance comparability and trustworthiness in this kind of studies and thus contribute to increased traffic safety.  相似文献   

20.
为全面了解Safety Ⅱ学术思想的传播情况,采集Web of Science数据库中284篇引用Safety Ⅱ学术著作的论文,采用科学计量和知识网络的方法,分析Safety Ⅱ学术思想的传播时间趋势、传播主体分布、传播领域与期刊以及传播的热点主题分布。研究结果表明:Safety Ⅱ学术思想在传播时间上呈线性增长趋势;核心传播区域为英格兰、美国、澳大利亚、挪威和意大利;核心传播机构为挪威斯塔万格大学、荷兰代尔夫特理工大学以及罗马第一大学;核心传播者为Saurin Tarcisio Abreu、Hollnagel Erik以及Patriarca Riccardo;Safety Ⅱ传播的核心领域为工业工程、运筹管理科学、人机工程学、应用心理学以及健康护理科学与服务等领域;Safety Ⅱ传播的主题为“韧性与功能共振”、“病患安全”、“事故与人的失误”、“安全与风险管理”、“社会技术系统与人的因素”以及“安全风险的评估”6大方向。研究结果对我国安全科学理论与实践的发展有重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号