首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
深井高温热环境的数值评价   总被引:1,自引:0,他引:1  
根据井下工作面热环境的特点,采用了数值模拟的方法,对高温巷道中的热环境进行数值模拟计算,并应用预计热舒适指标(PMV)对不同设计参数的井下环境的热舒适程度进行科学的评价,给出了高温巷道中的速度场、温度场、热舒适PMV值。以某矿山高温巷道为实例进行了热环境评价,得出了热环境评价结果。结果表明在温度为40℃的高温巷道中,采用入口处风速为0.8m/s即可满足通风降温的要求,所得结果更具有直观性、准确性,为最优通风降温方案的确定提供了技术依据。  相似文献   

2.
Corrosion is a major cause of structural deterioration in marine and offshore structures. It affects the life of process equipment and pipelines, and can result in structural failure, leakage, product loss, environmental pollution and the loss of life. Pitting corrosion is regarded as one of the most hazardous forms of corrosion for marine and offshore structures. The total loss of the structure might be very small, but local rate of attack can be very large and can lead to early catastrophic failure. Pitting corrosion is a localized accelerated dissolution of metal that occurs as a result of a breakdown in the protective passive film on the metal surface. It has been studied for many years; however, the structural failure due to pit characteristics is still not fully understood. Accurate pit depth measurements, precise strength assessment techniques, risk analysis due to pitting, and the mathematical relationship of the environmental factors that causes pitting failure are also factors, which need further understanding. Hence this paper focuses on these issues. It reviews and analyses the current understanding of the pitting corrosion mechanism and investigates all possible factors that can cause pitting corrosion. Furthermore, different techniques employed by scientists and researchers to identify and model the pitting corrosion are also reviewed and analysed. Future work should involve an in-depth scientific study of the corrosion mechanism and an engineering predictive model is recommended in order to assess failure, and thereby attempt to increase the remaining life of offshore assets.  相似文献   

3.
Heave compensation systems work to reduce the influence of unpredictable marine environments on offshore operations and are powered by hydraulic systems. As an important approach in the reliability field, importance measure assesses the impact of components on a system. This paper considers the importance of hydraulic system components for system performance. By analyzing the working state of each component in the passive compensation and active compensation phases, the working principle of the hydraulic system of a semi-active heave compensation experimental system is explained. According to the actual design of the experimental system and its working principle, eight types of 27 components, whose failures affect the performance, are extracted. The servo valve and the accumulator are determined to be redundant while the other components are nonredundant. Two performance-related importance measures, Griffith importance measure (GIM) and integrated importance measure (IIM), are then applied to sort the components of the hydraulic system and determine the maintenance sequence. Finally, based on the IIM value and the maintenance cost of each component, optimization strategies are proposed under different conditions using total cost and time as independent variables.  相似文献   

4.
海洋平台承受着风、浪、流等复杂环境载荷,安全系统在保障平台安全稳定方面的作用极为突出。为深入探讨影响海洋平台安全脆弱性的机理,针对海洋平台作业环境的极端性和复杂性,建立了海洋平台的安全脆弱性系统动力学分析模型,采用模糊层次分析法确定影响安全系统中各层因素的权重系数,并设定参数,考虑子系统不同的安全投入方案,进行了海洋平台脆弱性系统分析。研究结果表明:海洋平台设备系统对于暴露度和敏感度的影响程度最高,管理系统对海洋平台安全系统的适应度起主导作用;当安全投入总值一定,对各系统的投入比例不同时,为有效降低海洋平台脆弱性,应合理分配有限投入资金。  相似文献   

5.
Corrosion is one of the most significant contributors to structural degradation in process industries. It causes process equipment failure, which can led to severe safety issues. One approach to address this concern is to provide a preventive barrier-coating to equipment. Due to its superior reductive property, zinc is usually employed as a sacrificial anode in conventional corrosion-resistance methods. Nickel is also used to both mechanically strengthen the barrier and improve overall corrosion resistance; therefore, zinc, zinc-nickel alloys, and zinc-nickel-oxide composite coatings are commonly employed for anti-corrosion purposes. The complexation of zinc and nickel ions by agents (citrate, acetate and EDTA) can stabilize the electrodeposition bath and extend the pH of Ni(OH)2 and ZnO precipitation to improve corrosion resistance in the resultant coating. This paper reviews the challenge with these type of coatings and presents progress in Zn and Zn-Ni composite corrosion resistance coatings co-deposited with Al2O3, TiO2, ZrO2, SiO2, and Fe2O3 as means of corrosion control to reduce the probability of process equipment failure due to corrosion, which will improve the overall safety and reliability of processing equipment.  相似文献   

6.
刘洋  陈杰  李陈莹  陈红  刘凯  谢启源 《火灾科学》2020,29(4):214-221
膨胀型防火涂料在电缆防火工程中有较广泛的应用,在使用过程中确保电缆涂料的效果与经济性具有重要意义。对喷涂不同厚度膨胀型高氯化聚乙烯防火涂料的高压电力电缆开展了在典型强度外加辐射热流条件的着火引燃实验,分析了电力电缆点燃时间、受热期间涂层对电缆外护套的保护与涂层受热后的形态变化。结果表明,电缆的着火行为与涂层厚度紧密相关。相比于未喷涂防火涂料的电缆,覆有膨胀型高氯化聚乙烯防火涂料的电缆在加热过程中明显膨胀,生成较软的泡沫状碳质层,且引燃时间较长,电缆起火后火势较弱。随着涂层厚度的增加,该涂料对电缆的阻燃和保护效果更为显著,研究结果表明,电缆表面喷涂1.0 mm厚度的防火涂料较为适宜。  相似文献   

7.
为了研究充填采矿法中胶结充填体的水化放热作用,现场实测充填体温度,并对充填体散热的影响及治理进行了研究。研究结果表明:充填采矿法的采掘作业面均依靠局扇供风,因此通风效果直接影响作业面热环境,充填作业完成后3 d内放热量达到最大,此时充填体周围采场气温达28℃以上,应依据降温风速(0.5~1.0 m/s)的要求重新计算需风量;运用Ventsim预测采深为1 456 m时在3种风速下的采场热环境,当独头风量为3 m3/s时属于一级热害矿井,当风量增至6 m3/s和9 m3/s时热害降至一级标准以下,热环境明显改善,且入风为21.4℃、风量为6 m3/s时采场气温会降至27.2℃,因此加大采场有效风量和风速是改善深部热环境的有效措施;充填水化热与采场气温呈正相关,因此应合理安排作业计划,避免在放热量大的充填体周围作业,如需作业应加强通风,人员上岗应进行职业健康检查,合理安排岗位并及时发放降暑饮品,以免出现紧急情况或危险。  相似文献   

8.
Continuous production processes on North Sea installations necessitate extended work schedules; 2-week offshore tours (alternating with shore breaks), 12 h shifts and rapid day/night shift changes are inherent features of offshore work. These intensive rosters, worked in a demanding physical and psychosocial environment, are potential sources of fatigue and impaired performance among offshore personnel. This article focuses on offshore working time arrangements, and presents a systematic review of studies which examine offshore day/night shift patterns in relation to operational safety and individual health risks. Of the 53 studies retrieved, 24 met the review criteria.Field study findings are generally consistent in showing that sleep, alertness and performance are relatively stable across day-shift tours; initial night shifts are adversely affected by circadian disruption, but full physiological and psychological adaptation occurs within 5–6 days; re-adaptation to day shifts is slower, and varies widely across individuals; the offshore environment is conducive to night-shift adaptation, but interventions to facilitate re-adaptation have proved only modestly effective. Analyses of survey data and accident/sickness records identify offshore night work as a risk factor for impaired sleep, health problems, and injuries, but little is known about the long-term health effects of different offshore shift rotations.In conclusion, research methodology and findings, and working time issues of current concern to the offshore oil/gas industry, are discussed. Aspects of offshore work schedules that have been not been widely studied (e.g. overtime, irregular work patterns) are also highlighted, and research areas that would merit further attention are noted.  相似文献   

9.
Crevice corrosion occurs in a holiday and disbonded region between coating and pipeline steel. Cathodic protection (CP) is generally recognized as the most effective method for corrosion prevention of pipeline, but its effectiveness may be reduced at defects in a disbonded coating. It is difficult to measure and probe corrosion parameters accurately based on experimental work. Therefore, a mathematical model is necessary to identify the phenomena and mechanisms that contribute to the crevice corrosion process. In this work, a mathematical model was developed to determine the evolution of chemical and electrochemical transient processes of crevice corrosion in NaCl dilute solution, and the effect of cathodic protection and crevice width on corrosion of 20# steel pipeline with disbonded coatings. Results have demonstrated that the extent of crevice corrosion depends on the crevice geometry and could be influenced by the increase of crevice depth and decrease of its width. The oxygen concentrations drop significantly inside a crevice whether CP is applied or not and whether crevice width decreased or not. The pH values and conductivity of crevice solution increase with the time. The research provides a theoretical foundation for cathodic protection of pipelines and establishes an effective corrosion model which can identify the phenomena and mechanisms of the crevice corrosion process. This work could be used to help mitigate the corrosion failure of pipelines to prevent catastrophic accidents in oil, gas and chemical process industries.  相似文献   

10.
传统的油漆喷涂环境污染严重,危害人体健康。以混合喷涂技术为主要研究对象,将混气喷涂与传统的空气喷涂在柴油发动机上进行实际应用与对比分析,对混气喷涂的技术性能与环境污染特征进行了评估。结果表明,与空气喷涂相比,混气喷涂可有效提升喷漆的漆膜厚度(平均提高约39.5%),喷涂质量较高;油漆利用效率较高,减少了涂料的消耗约20%,降低了生产成本;可抑制漆雾的飞散,减少了50%以上的VOCs排放,改善了作业环境质量;此外,混合喷涂还可降低喷涂时间,提高喷涂效率。因此,建议我国政府提倡推进此新技术的应用,逐步淘汰落后技术设备,降低喷涂带来的环境污染。  相似文献   

11.
Hydrogen (H2) explosion effects recently examined, are confirming the devastating loss scenarios to humans, environment, assets, and associated business interruption. H2 production is a core process in refineries used in further process steps. Steam reforming of natural gas or a mix with naphtha or LPG is a common hydrogen production technique, where the latest technologies have adopted enhanced metallurgies to minimize explosion risk and the associated maintenance cost following plant degradation owing to corrosion effects. However, corrosion rates are still high in specific areas of piping and process equipment. The aim of this paper is to present a methodology based on semi-quantitative RBI modeling according to regulations by API and recent EN standards, adopting a family of linear regression forecasting models that depict the yearly corrosion rate (per corrosion loop) of a hydrogen production steam reforming unit; this is done under different operating conditions (e.g., temperature, pressure, and fluid speed), metallurgy and other related physicochemical variables. The model is based on the examination of both ultrasonic wall thinning measurements and the examination of quantitative crosslinking total corrosion effects along with the physicochemical properties prevailing in different plant corrosion loops. The outcome of the regression analysis is an expansive family of multivariable equations describing, with a defined accuracy, the yearly corrosion rate and associated lifespan forecast per corrosion loop, and per examined part. These equations were further utilized in a custom-made database that can be used as an additional loss prevention tool by the hydrogen production unit management team. Evaluation results regarding the tool efficiency are presented in the following of this paper.  相似文献   

12.
为研究不同风向下海上石油平台工艺区的风场特征和系统韧性,采用Fluent软件从8种不同风向角度对海上平台工艺区风环境进行三维数值模拟,分析研究高于工艺区地面1.5,3,4.5 m水平风场风速分布特征,确定微静风区和强风速区面积,并以微静风区域占比为指标评估系统抗灾韧性。研究结果表明:风速激增区出现在障碍物前缘或侧翼;风口顺延形成强风道,风速介于1.6~3.1 m/s之间;系统韧性与微静风区占比呈现负相关,在1.5 m高度风场处,E-90°风向时微静风区域面积占比约为69%,工艺系统韧性较弱,风险较大;NW-315°风向时微静风区域面积占比约为9.6%,工艺系统韧性较强,风险较小;随着风场高度增大,各个风向系统韧性均有所提高,W-270°风向时系统韧性升幅达12.1%,N-0°风向时系统韧性升幅达12.24%。研究结果可为海上石油平台逃生路线设计、火气监控设备布置及提高平台自身抗灾韧性方面提供指导依据。  相似文献   

13.
Hydrocarbon leaks on offshore installations may result in severe consequences to personnel, to the environment and to assets. In order to prevent such leaks, it is crucial to understand their root causes. The objective of this paper is to study the circumstances of hydrocarbon leaks on the Norwegian continental shelf (NCS). In the study, all reported hydrocarbon leaks from process inventories on all offshore installations on the NCS, with an initial leak rate higher than 0.1 kg/s in the period 2008–2014, have been considered. This includes 78 hydrocarbon leaks, of which about 60% have occurred during manual intervention on normally pressurized systems. The dominating activity when leaks occur is preventive maintenance. A significant fraction of the leaks occur during the preparation for maintenance; such a preparation is typically carried out during the night shift. About half of the leaks are associated with wellhead area and manifolds, separation and compression systems. A substantial fraction of the leaks can be associated with verification faults, dominated by the failure to comply with procedural requirements that are needed to carry out independent verification.  相似文献   

14.
原油储罐的腐蚀机理研究及防护技术现状   总被引:14,自引:3,他引:11  
原油储罐在运行过程中,经常遭受内、外环境介质的腐蚀。内腐蚀主要为内部储存介质、罐底积水及罐内空间部分的凝结水汽的腐蚀作用,其中罐底的内腐蚀尤为严重,主要是由滞留在罐底的沉积水所引起;外部腐蚀主要是大气腐蚀、土壤腐蚀、杂散电流腐蚀等。笔者概要介绍了原油储罐的腐蚀状况,重点讨论了储罐不同部位的腐蚀机理。在此基础上,总结并提出了一些行之有效的防腐措施,如抗静电涂料防腐、涂料与阳极保护相结合的保护技术、热喷铝技术以及添加缓蚀剂等  相似文献   

15.
井下工作面必须应用通风系统。采用数值模拟技术分析了两种通风方式下,不同风口布置的掘进巷道内空气龄、空气流速和热舒适性指标PMV值的分布情况。根据模拟结果对掘进巷道通风模式的选择提出了建议。结果表明,长距离送风和短距离抽风方式是最有效率的通风模式。压入式通风方式的风口应布置在距掘进头10 m附近,抽出式通风方式抽风口应布置在距掘进头2m范围内。在相同的送风条件下,可增大短距离抽风方式下的送风温度,以提高掘进巷道内热舒适性和降低能耗。  相似文献   

16.
为了预测分析户外高温环境下电网作业人员热安全风险,采用预测热应激(Predicted Heat Strain,PHS)模型,考虑人体基础代谢率个体差异性和人体移动与风速对服装热阻和湿阻的影响,应用改进后的预测热应激模型对多种户外高温作业环境工况和不同劳动强度下电网作业人员的核心体温、出汗量等生理参数和最大允许暴露时长进行计算分析。结果表明:在户外高温环境中,随着环境温度、相对湿度和新陈代谢率的升高,电网作业人员的核心体温也随之升高,湿热环境中风速的增加会加剧电网作业人员的热应激;当电网作业人员从事代谢率为240 W/m2高劳动强度工作时,可接受的最大工作时长相比代谢率为190 W/m2中度劳动强度工作时长减小50%以上。研究结果可为电网公司夏季户外工作组织策略制定和作业人员热安全防护提供参考支持。  相似文献   

17.
针对RBI评估失效概率计算方法对海上平台静设备的适用性,基于国内海上平台设备失效数据统计现状,提出以数据库软件为基础建立RBI评估系统的建议,以获取更加可靠的通用失效概率;对比国内外腐蚀减薄损伤系数计算方法的差异,根据海洋环境恶劣,静设备腐蚀严重的特点,结合模糊数学理论,提出更为保守的计算方法,并选取渤海某平台静设备验证新方法的适用性。结果表明,新方法得到的失效概率等级分布更为均匀,高失效概率等级的数量增多,符合海上平台静设备失效概率高的特点,但仍需通过生产实践来检验其可靠性。  相似文献   

18.
系统检索了2000至2012年年底风电行业事故情况,从事故总数、死亡人数及事故类型展开分析。结果表明,风电行业风险具有自身特征,事故一直呈现上升趋势,其中叶片损坏、火灾、结构毁损、抛冰、交通运输、环境破坏等事故比较突出,对从业人员和公众构成威胁。我国风电行业正处于快速扩张期,内在风险较高,需引起行业主管部门和企业的高度重视,开展全产业链系统安全研究和管理手段创建,开发本质安全型工艺和设备,强化施工及运营安全管理。分析结果对指导风电行业安全管理决策和提升企业安全管理水平具有现实意义。  相似文献   

19.
为提高膨胀型防火涂料的阻燃性能,以聚氨酯树脂为基料,以聚磷酸铵、尿素为阻燃体系,通过加入不同掺量的钛酸酯偶联剂改性β-环糊精(β-CD),提高阻燃效果。通过红外光谱仪(FT-IR)、锥形量热仪(CONE)、热重分析仪(TG)、差热扫描量热仪(DSC)等,研究改性β-CD的含量对膨胀型防火涂料的火安全性的影响,使用Coats-Redfern积分法计算涂料的热解动力学。研究结果表明:改性β-CD能有效地提高涂料的阻燃性能,当β-CD为1wt%时拥有最佳阻燃性能,1wt%改性β-CD能够提高涂层的蓄热能力,延缓APP的分解和抑制碳质材料的分解,进而提高涂料的阻燃性能。通过热解动力学拟合曲线得出,1wt%的样品能在253 ℃以后显著提高反应的活化能,提高涂层的阻燃性。  相似文献   

20.
The demands and constraints of the offshore working environment can have adverse effects on health, particularly the quality of sleep. Perceived risk and safety are significant psychological stress factors which may interfere with and deteriorate the sleep quality of offshore personnel. The present study explores the relationship between risk perception, safety climate and sleep quality. Data were collected under the auspices of the Petroleum Safety Authorities in Norway using a cross-sectional design. A total of 9601 offshore workers from 52 offshore installations on the Norwegian continental shelf participated in the study. Our findings indicate that both risk perception and safety climate are significantly related to sleep quality. The results of the present study suggest that risk perception and safety climate not only are important aspects of safety performance in the offshore industry, but also have an impact on sleep quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号