首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
井筒完整性失效是气井生产中的主要风险,为有效评价井筒完整性风险,应用贝叶斯网络的推理与学习能力,建立了基于贝叶斯网络和Noisy-OR gate模型的井筒完整性失效概率计算方法和风险评价模型。由故障树分析将井筒分为管柱、水泥环密封性、井口装置、水力屏障和其他部件5个评价单元,确定了各单元的主要风险因素,建立了井筒完整性失效的贝叶斯网络拓扑结构;由Noisy-OR gate模型和历史数据,确定了贝叶斯网络的条件概率参数;将基于贝叶斯网络的失效概率与层次分析法相结合,确定了风险评价指标和等级划分标准;建立了气井井筒完整性风险评价方法。结果表明,该方法实现了井筒完整性失效概率的定量计算、风险的定量评价和主要风险因素的反向推理,可为预防和控制井筒完整性失效提供决策依据,有助于降低井筒完整性失效风险。  相似文献   

2.
基于故障树与灰色模糊理论的城市CNG加气站安全评价   总被引:2,自引:2,他引:0  
城市CNG加气站安全状况好坏,直接影响到整个城市天然气汽车的安全运行,为此提出运用故障树分析法与灰色模糊理论对城市CNG加气站进行安全状况分析。通过对站内危险因素的分析,建立了加气站主要系统的故障树,得到引起加气站主要系统失效的70个基本事件,建立加气站安全评价指标体系,利用专家评分法对指标进行评分,利用层次分析法计算各指标层次相对权重。运用灰色关联分析法,计算参评数据序列与标准数据序列的关联系数矩阵,即得出模糊评判矩阵。再由模糊理论得出加气站安全等级,并给出相应的日常安全工作重点。用该方法对常州市CNG加气站进行安全评价,得出安全等级为Ⅱ级,这与加气站实际运行状况相符,说明用该方法对加气站进行安全评价是有效的、可靠的,能够为城市CNG加气站安全管理提供依据。  相似文献   

3.
Vast amounts of oil & gas (O&G) are consumed around the world everyday that are mainly transported and distributed through pipelines. Only in Canada, the total length of O&G pipelines is approximately 100,000 km, which is the third largest in the world. Integrity of these pipelines is of primary interest to O&G companies, consultants, governmental agencies, consumers and other stakeholder due to adverse consequences and heavy financial losses in case of system failure. Fault tree analysis (FTA) and event tree analysis (ETA) are two graphical techniques used to perform risk analysis, where FTA represents causes (likelihood) and ETA represents consequences of a failure event. ‘Bow-tie’ is an approach that integrates a fault tree (on the left side) and an event tree (on the right side) to represent causes, threat (hazards) and consequences in a common platform. Traditional ‘bow-tie’ approach is not able to characterize model uncertainty that arises due to assumption of independence among different risk events. In this paper, in order to deal with vagueness of the data, the fuzzy logic is employed to derive fuzzy probabilities (likelihood) of basic events in fault tree and to estimate fuzzy probabilities (likelihood) of output event consequences. The study also explores how interdependencies among various factors might influence analysis results and introduces fuzzy utility value (FUV) to perform risk assessment for natural gas pipelines using triple bottom line (TBL) sustainability criteria, namely, social, environmental and economical consequences. The present study aims to help owners of transmission and distribution pipeline companies in risk management and decision-making to consider multi-dimensional consequences that may arise from pipeline failures. The research results can help professionals to decide whether and where to take preventive or corrective actions and help informed decision-making in the risk management process. A simple example is used to demonstrate the proposed approach.  相似文献   

4.
为了全面分析油轮靠港装卸作业溢油事故风险,在风险定量分析中引入了模糊Bow-tie模型,基于事故树方法分析油轮靠港装卸作业发生溢油事故的原因,采用事件树方法分析溢油事故可能导致的后果,利用模糊集理论与专家评价相结合的方法分析油轮靠港装卸作业溢油的模糊可能值,采用层次分析法确定作业溢油后果因素的权重值,采用矩阵乘法计算溢油后果风险值。分析结果表明:油轮靠港装卸作业过程中一旦发生溢油,发生火灾+污染、爆炸+污染的概率较高。基于以上风险分析提出了油轮靠港装卸作业风险的防控措施,可为油轮靠港装卸作业安全风险管理提供参考。  相似文献   

5.
针对燃气管道第三方破坏事故复杂的特点,基于层次分析和模糊数学的理论,计 算燃气管道第三方破坏风险失效的可能性。全面识别城镇燃气管道第三方破坏事故的危 害因素,构建包含56个基本事件的燃气管道第三方破坏故障树。利用模糊集合隶属函数 ,计算燃气管道发生第三方破坏事故基本事件的模糊概率。利用改进的层次分析法,得 出各专家权重并修正各专家的评估意见,计算管道第三方破坏失效的可能性。以某大型 省会城市燃气管道为例进行验证分析,证明该方法的风险评价结果与实际情况相符,可 为燃气公司安全风险防控提供依据。  相似文献   

6.
Ensuring the safe operation of hydropower stations is one of the key challenges for electric generation. Clearly the safe operation of such systems can only be archived with proper and effective maintenance scheduling. The objective of this study is to analyze, rank and prioritize the risk factors responsible for equipment failures of a hydraulic turbine generator unit (HTGU) based on operating data and expert elicitation. Here a simple qualitative risk evaluation model is proposed able to consider seven typical failures in HTGU. The proposed tool is applied for the risk prioritization of equipment failures, e.g. shaft torsion, misalignment, rotating fault, axis bend, runner fault, water guide, and wicket gate of a hydropower station in China. The obtained results have been compared against the actual statistics of equipment failures of a hydropower station in China, considered showing good agreement. All of these results provide theoretical guidance for digitalization realization of equipment failures.  相似文献   

7.
页岩气集输管道运行压力和出砂量在生产过程中衰减显著,这导致管道失效概率不断变化,针对这一问题,采用贝叶斯网络方法,建立了页岩气集输管道失效概率动态计算模型。首先,分析页岩气气质特征、管道运行工况及失效原因,利用逻辑门的连接关系,建立了页岩气集输管道失效故障树;其次,基于贝叶斯网络与失效故障树的结构映射关系,将失效故障树转化成贝叶斯网络结构;然后,通过贝叶斯网络的参数学习,实现模型求解;最后,进行了实例应用。研究结果表明:该模型不仅可有效计算页岩气集输管道的失效概率,还能确定影响管道失效的关键风险因素,并且可通过调整节点的状态及概率分布,实现页岩气集输管道失效概率的更新。  相似文献   

8.
Probabilistic risk assessment (PRA) is a comprehensive, structured and logical analysis method aimed at identifying and assessing risks of complex process systems. PRA uses fault tree analysis (FTA) as a tool to identify basic causes leading to an undesired event, to represent logical dependency of these basic causes in leading to the event, and finally to calculate the probability of occurrence of this event.To conduct a quantitative fault tree analysis, one needs a fault tree along with failure data of the basic events (components). Sometimes it is difficult to have an exact estimation of the failure rate of individual components or the probability of occurrence of undesired events due to a lack of sufficient data. Further, due to imprecision in basic failure data, the overall result may be questionable. To avoid such conditions, a fuzzy approach may be used with the FTA technique. This reduces the ambiguity and imprecision arising out of subjectivity of the data.This paper presents a methodology for a fuzzy based computer-aided fault tree analysis tool. The methodology is developed using a systematic approach of fault tree development, minimal cut sets determination and probability analysis. Further, it uses static and dynamic structuring and modeling, fuzzy based probability analysis and sensitivity analysis.This paper also illustrates with a case study the use of a fuzzy weighted index and cutsets importance measure in sensitivity analysis (for system probabilistic risk analysis) and design modification.  相似文献   

9.
笔者以液化天然气(LNG)接受站的生产工艺、设备、作业环境的特点为背景,提出一种基于模糊层次分析方法(Fuzzy-Analytic Hierarchy Process)的风险评估方法。首先,根据LNG接收站风险事故多层次、多因素及不确定的特点,结合本行业的安全标准,确立了LNG接受站的风险因素和评价指标,建立接受站的安全评价体系;随后,运用Fuzzy-AHP方法确定权重矢量和模糊评价矩阵,并通过模糊运算求出决策矢量,实现对风险因素的排序以达到风险辨识目的;最后,对国内某LNG站进行了实例计算。计算表明该接收站的硬件设施完善,但应加强风险管理,制定相应的措施应对因气候条件、储罐区管理不当及船舶安全保护不到位等引发的事故。结果表明基于LNG站的Fuzzy-AHP风险辨识模型的安全性综合评价是有效的。  相似文献   

10.
基于T-S模糊故障树的输气站场设备失效可能性研究   总被引:2,自引:0,他引:2  
针对目前国内缺乏输气站场设备失效数据库的特点,同时考虑到设备具有不同的故障程度,提出将指标评价引入至T-S模糊故障树分析中,对设备进行失效可能性分析。首先构建设备的T-S模糊故障树;其次对故障树底事件进行指标评价,转化成当前工况下的故障程度;再次对设备的故障可能性值进行计算;最后,利用模糊数学的方法将故障可能性值转化为失效概率,并参考API 581中的失效概率等级对设备进行失效可能性等级划分。实例分析表明,该方法不仅比传统故障树分析更切合实际,又能够避免指标评价法淡化关键指标的不足,且兼具定量评价与半定量评价的优点。  相似文献   

11.
为了提高戴腰山铜矿采矿技改工程本质安全程度,辨识技改工程中存在的主要危险、有害因素;结合技改项目资料和现场调查,将该项目划分为10个评价单元;针对不同评价单元特点,分别采用安全检查表(SCL)、预先危险性分析(PHA)、事故树分析(FTA)和作业条件危险性评价法(LEC)等对该技改工程中的危险、有害因素进行了定性、定量评价;针对安全评价中出现的问题提出了切实可行的安全措施建议。  相似文献   

12.
运用故障树安全评价的方法和火灾风险评估中的定量分析方法,以人员安全为出发点,对轨道交通运营过程火灾事故风险进行评估。并对重庆市轻轨2号线临江门车站进行紧急情况下人员疏散计算,判断轻轨临江门车站发生火灾等紧急事故时,能否确保乘客的人身安全。结合轨道交通现状给出相应对策措施,降低事故发生的可能性,确保乘客生命安全和财产不受损失。  相似文献   

13.
为了找出导致加油站发生火灾爆炸事故的基本事件及其可能性大小,以加油站火灾爆炸故障树为基础建立相应的贝叶斯网络风险模型。在FTA向BN转化算法的基础上对条件概率做出了修正。利用GeNIe软件计算加油站火灾爆炸事故基事件的后验概率,同时进行灵敏度和影响力分析。最后通过实例分析,找出了导致某加油站发生火灾爆炸事故危险性最大的因素集为:加油站接打手机、机械碰撞、给塑料容器加油、加油冒油、油枪渗漏等。结果表明,注重基事件的多态性和事件间逻辑关系合理性的新模型,能推算出更准确的基事件概率分布,同时可以找出导致事故发生的最有可能途径,为加油站事故预防,系统改进提供较为合理性建议。  相似文献   

14.
Loss of the underground gas storage process can have significant effects, and risk analysis is critical for maintaining the integrity of the underground gas storage process and reducing potential accidents. This paper focuses on the dynamic risk assessment method for the underground gas storage process. First, the underground gas storage process data is combined to create a database, and the fault tree of the underground gas storage facility is built by identifying the risk factors of the underground gas storage facility and mapping them into a Bayesian network. To eliminate the subjectivity in the process of determining the failure probability level of basic events, fuzzy numbers are introduced to determine the prior probability of the Bayesian network. Then, causal and diagnostic reasoning is performed on the Bayesian network to determine the failure level of the underground gas storage facilities. Based on the rate of change of prior and posterior probabilities, sensitivity and impact analysis are combined to determine the significant risk factors and possible failure paths. In addition, the time factor is introduced to build a dynamic Bayesian network to perform dynamic assessment and analysis of underground gas storage facilities. Finally, the dynamic risk assessment method is applied to underground gas storage facilities in depleted oil and gas reservoirs. A dynamic risk evaluation model for underground gas storage facilities is built to simulate and validate the dynamic risk evaluation method based on the Bayesian network. The results show that the proposed method has practical value for improving underground gas storage process safety.  相似文献   

15.
Safety performance evaluation is a significant way to ensure the safety of oil and gas production plants. Various evaluation methods have been proposed to make safety evaluation more consistent and scientific. However, a major concern is that many existing safety evaluation measurements are still subjective and are not easy to obtain in a uniform way, which can be attributed to the challenges that process plants faced such as people having different knowledge levels, equipment with dispersed locations and management with many processes. This paper aims to display the impact of risk factors on system safety level in a succinct and visual way that may be expected to overcome subjective opinions from experts and provide a more pertinent and practical safety strategies. To this end, an integrated framework is developed, which considers crucial risk factors from pipeline, static equipment, dynamic equipment and management. First, Fault tree analysis (FTA) is used to explicitly determine the crucial r risk factors. Then, a novel fuzzy cognitive map cooperating with relative degree analysis model (FCM-RDA) is proposed to deal with the weigh distribution opinions. Finally, considering the oil and gas production process is a complex system, a fuzzy comprehensive evaluation (FCE) is employed to calculate the overall safety level.  相似文献   

16.
原油集输联合站故障树分析研究   总被引:3,自引:0,他引:3  
采用故障树分析法对原油集输联合站生产工艺流程和危险危害因素进行分析,确定原油集输联合站的故障树因素表,以该站故障为顶上事件,以火灾爆炸、介质泄漏、其他危险作为故障树的中间事件,建立联合站故障树。通过定性定量分析,求取联合站故障树的最小割集为77组,进而确定故障树顶事件的事故发生概率为5.68×10-3和底事件结构重要度,得出影响集输联合站安全性的重要因素为通风不良、储罐密封不良、液体腐蚀、盘管穿孔和人员误操作等。因而提出加强原油集输联合站安全监察和监控措施,及时地发现和处理故障,以提高联合站运行安全可靠性和生产效率。  相似文献   

17.
Fault tree analysis (FTA) is an important method to analyze the failure causes of engineering systems and evaluate their safety and reliability. In practical application, the probabilities of bottom events in FTA are usually estimated according to the opinions of experts or engineers because it is difficult to obtain sufficient probability data of bottom events in fault tree. However, in many cases, there are many experts with different opinions or different forms of opinions. How to reasonably aggregate expert opinions is a challenge for the engineering application of fault tree method. In this study, a fuzzy fault tree analysis approach based on similarity aggregation method (SAM-FFTA) has been proposed. This method combines SAM with fuzzy set theory and can handled comprehensively diverse forms of opinions of different experts to obtain the probabilities of bottom events in fault tree. Finally, for verifying the applicability and flexibility of the proposed method, a natural gas spherical storage tank with a volume of 10,000 m3 was analyzed, and the importance of each bottom event was determined. The results show that flame, lightning spark, electrostatic spark, impact spark, mechanical breakdown and deformation/breakage have the most significant influence on the explosion of the natural gas spherical storage tank.  相似文献   

18.
油气管道腐蚀可靠性的贝叶斯评价法   总被引:1,自引:1,他引:1  
对油气管道腐蚀危害因素进行分析,建立其失效故障树。根据故障树分析原理,找出导致管道腐蚀穿孔破坏的23个因素。通过对故障树的定性分析,采用下行法求出油气管道腐蚀失效故障树的96个全部最小割集,并确定失效的主要影响因素。结合最小割集不相交化法和贝叶斯可靠性评定法对管道腐蚀失效进行定量分析,通过某油气管道事故统计数据,利用贝叶斯可靠性评定方法求出油气管道腐蚀可靠性的一阶矩和二阶矩。对一阶矩和二阶矩进行拟合,求出油气管道腐蚀可靠性的第一近似下限和第二近似下限。结果表明:得出的油气腐蚀管道贝叶斯可靠性评价结果可以指导管道系统的维护和维修,降低管道运行的风险。  相似文献   

19.
Crude oil tank fire and explosion (COTFE) is the most frequent type of accident in petroleum refineries, oil terminals or storage which often results in human fatality, environment pollution and economic loss. In this paper, with fault tree qualitative analysis technique, various potential causes of the COTFE are identified and a COTFE fault tree is constructed. Conventional fault tree quantitative analysis calculates the occurrence probability of the COTFE using exact probability data of the basic events. However, it is often very difficult to obtain corresponding precise data and information in advance due to insufficient data, changing environment or new components. Fuzzy set theory has been proven to be effective on such uncertain problems. Hence, this article investigates a hybrid approach of fuzzy set theory and fault tree analysis to quantify the COTFE fault tree in fuzzy environment and evaluate the COTFE occurrence probability. Further, importance analysis for the COTFE fault tree, including the Fussell–Vesely importance measure of basic events and the cut sets importance measure, is performed to help identifying the weak links of the crude oil tank system that will provide the most cost-effective mitigation. Also, a case study and analysis is provided to testify the proposed method.  相似文献   

20.
大型游乐设施的运行是一个动态管理过程,不仅涉及设备本身,而且与人、环境等因素密切相关。针对这个特点,提出大型游乐设施风险矩阵(RMM)的风险分级方法。提出了将事故树与模糊数学相结合的模糊事故树法(FFTA);采用3σ模糊表征法计算大型游乐设施各类风险事故的概率;再采用信息熵法来评价大型游乐设施的风险后果;最后利用风险矩阵法来确定大型游乐设施的风险等级,并通过实例验证了该分级模型有效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号