共查询到20条相似文献,搜索用时 0 毫秒
1.
A three-dimensional CFD model was developed to simulate the turbulent flow field induced by dust feeding and the associated dust dispersion within the 20-L explosion vessel equipped with the perforated annular nozzle. The model was validated against experimental data for pressure and root mean square velocity.Simulation results have shown that the turbulent kinetic energy is rather uniformly distributed and its values are significantly lower than those attained with the rebound nozzle. Furthermore, the perforated annular nozzle is able to generate a uniform dust/air cloud. However, a consistent fraction of the dust remains trapped inside the nozzle and, thus, it does not contribute to the explosion process. 相似文献
2.
Reducing accident occurrence in petrochemical plants is crucial, thus appropriately allocating management resources to safety investment is a vital issue for corporate management as international competition intensifies. Understanding the priority of safety investment in a rational way helps achieve this objective.In this study, we targeted an acrylonitrile plant. First, Dow Chemical's Fire and Explosion Index (F&EI) identified the reaction process as having the greatest physical risk. We evaluated the severity of accidents in the reaction process using the Process Safety Metrics advocated by the Center for Chemical Process Safety (CCPS); however, this index does not express damages a company actually experience. To solve this problem, we proposed a new metric that adds indirect cost to CCPS metrics. We adopted fault tree analysis (FTA) as a risk assessment method. In identifying top events and basic events, we attempted to improve the completeness of risk identification by considering accidents from the past, actual plant operation and equipment characteristics, natural disasters, and cyber-attacks and terrorist attacks. Consequently, we identified the top events with high priority in handling because of serious accidents as fire/explosion outside the reactor, fire/explosion inside the reactor, and reactor destruction. The new CCPS evaluation index proposed in this study found that fire and explosion outside the reactor has the highest severity. We considered the creation of the fault tree (FT) diagram of the top event, estimating the occurrence probability, and identifying the risk reduction part and capital investment aimed at risk reduction. As an economically feasible selection method for risk reduction investment, using the difference in loss amounts before and after safety investments indicated investment priority. 相似文献
3.
In this work, the effect of spatial distribution and values of the turbulent kinetic energy on the pressure-time history and then on the explosion parameters (deflagration index and maximum pressure) was quantified in both the standard vessels (20 L and 1 m3).The turbulent kinetic energy maps were computed in both 20 L and 1 m3 vessels by means of CFD simulations with validated models. Starting from these maps, the turbulent flame propagation of cornstarch was calculated, by means of the software CHEMKIN. Then, the pressure-time history was evaluated and from this, the explosion parameters.Calculations were performed for three cases: not uniform turbulence level as computed from CFD simulations, uniform turbulence level and equal to the maximum value, uniform profile and equal to the minimum value. It was found that the cornstarch in the 20 L vessel get variable classes (St-1, St-2, St-3) with respect to the 1 m3 (St-1). However, simulations performed on increasing the ignition delay time, shown that the same results can be attained only using 260 ms as ignition delay time in the 20 L vessel. 相似文献
4.
This study aims to develop a quantitative risk assessment (QRA) framework for on-board hydrogen storage systems in light-duty fuel cell vehicles, with focus on hazards from potential vehicular collision affecting hydride-based hydrogen storage vessels. Sodium aluminum hydride (NaAlH4) has been selected as a representative reversible hydride for hydrogen storage. Functionality of QRA framework is demonstrated by presenting a case study of a postulated vehicle collision (VC) involving the onboard hydrogen storage system. An event tree (ET) model is developed for VC as the accident initiating event. For illustrative purposes, a detailed FT model is developed for hydride dust cloud explosion as part of the accident progress. Phenomenologically-driven ET branch probabilities are estimated based on an experimental program performed for this purpose. Safety-critical basic events (BE) in the FT model are determined using conventional risk importance measures. The Latin Hypercube sampling (LHS) technique has been employed to propagate the aleatory (i.e., stochastic) and epistemic (i.e., phenomenological) uncertainties associated with the probabilistic ET and FT models. Extrapolation of the proposed QRA framework and its core risk-informed insights to other candidate on-board reversible and off-board regenerable hydrogen storage systems could provide better understanding of risk consequences and mitigation options associated with employing this hydrogen-based technology in the transportation sector. 相似文献
5.
氢气火灾爆炸事故是氯碱生产中最常见的事故之一.在对焦作化电集团实际调研的基础上,采用系统安全分析方法中的事故树分析方法对氢气火灾爆炸事故进行了定性、定量分析.给出了氢气火灾爆炸事故树图,事故树的最小割集、最小径集以及3种重要度.最后基于事故树分析提出了预防事故发生的安全防范措施. 相似文献
6.
In spite of extensive research and development for more than 100 years to prevent and mitigate dust explosions in the process industries, this hazard continues to threaten industries that manufacture, use and/or handle powders and dusts of combustible materials. Lack of methods for predicting real dust cloud structures and flame propagation processes has been a major obstacle to prediction of course and consequences of dust explosions in practice. However, work at developing comprehensive numerical simulation models for solving these problems is now on its way. This requires detailed experimental and theoretical studies of the physics and chemistry of dust cloud generation and combustion. The present paper discusses how this kind of work will promote the development of means for prevention and mitigation of dust explosions in practice. However, progress in other areas will also be discussed, e.g. ignition prevention. The importance of using inherently safe process design, building on knowledge in powder science and technology, and of systematic education/training of personnel, is also emphasized. 相似文献
7.
A number of chemical accidents have occurred in China over the past two decades with significant impact on humans and the environment. It is expected that lessons will have been learned from these accidents that will help industries to reduce the risk that catastrophic chemical accidents occur in future. In fact, to some extent there is evidence that lessons have been learned, to the extent that the Chinese government has substantially strengthened legislation and regulatory standards. Nonetheless, there remains a concern that much more still needs to be done to reduce chemical accidents risks in China. Important progress in this area requires not only government support but a commitment across all hazardous industries to learn from past accidents that may in many cases require establishment or considerable improvement of their safety management systems. To assist small and medium-sized enterprises (SMEs), in this effort, results of an analysis of common causes of the chemical accidents reported in the Major Accident Information (MAI) website of Chinese State Administration of Work Safety (SAWS) are presented in this paper In particular, inadequate process hazard analysis (PHA), training and emergency response planning (ERP) were identified as the top three process safety management (PSM) elements that contribute to most of the SMEs accidents in China. Seven recommendations are proposed in order to improve the effectiveness of lesson learning for government agencies and SMEs. 相似文献
8.
Scott G. Davis Peter C. Hinze Olav R. Hansen Kees van Wingerden 《Journal of Loss Prevention in the Process Industries》2011,24(6):837-846
The hazards of dust explosions prevailing in plants are dependent on a large variety of factors that include process parameters, such as pressure, temperature and flow characteristics, as well as equipment properties, such as geometry layout, the presence of moving elements, dust explosion characteristics and mitigating measures. A good dust explosion risk assessment is a thorough method involving the identification of all hazards, their probability of occurrence and the severity of potential consequences. The consequences of dust explosions are described as consequences for personnel and equipment, taking into account consequences of both primary and secondary events.While certain standards cover all the basic elements of explosion prevention and protection, systematic risk assessments and area classifications are obligatory in Europe, as required by EU ATEX and Seveso II directives. In the United States, NFPA 654 requires that the design of the fire and explosion safety provisions shall be based on a process hazard analysis of the facility, process, and the associated fire or explosion hazards. In this paper, we will demonstrate how applying such techniques as SCRAM (short-cut risk analysis method) can help identify potentially hazardous conditions and provide valuable assistance in reducing high-risk areas. The likelihood of a dust explosion is based on the ignition probability and the probability of flammable dust clouds arising. While all possible ignition sources are reviewed, the most important ones include open flames, mechanical sparks, hot surfaces, electric equipment, smoldering combustion (self-ignition) and electrostatic sparks and discharges. The probability of dust clouds arising is closely related to both process and dust dispersion properties.Factors determining the consequences of dust explosions include how frequently personnel are present, the equipment strength, implemented consequence-reducing measures and housekeeping, as risk assessment techniques demonstrate the importance of good housekeeping especially due to the enormous consequences of secondary dust explosions (despite their relatively low probability). The ignitibility and explosibility of the potential dust clouds also play a crucial role in determining the overall risk.Classes describe both the likelihood of dust explosions and their consequences, ranging from low probabilities and limited local damage, to high probability of occurrence and catastrophic damage. Acceptance criteria are determined based on the likelihood and consequence of the events. The risk assessment techniques also allow for choosing adequate risk reducing measures: both preventive and protective. Techniques for mitigating identified explosions risks include the following: bursting disks and quenching tubes, explosion suppression systems, explosion isolating systems, inerting techniques and temperature control. Advanced CFD tools (DESC) can be used to not only assess dust explosion hazards, but also provide valuable insight into protective measures, including suppression and venting. 相似文献
9.
In Taiwan, process safety accidents often occur despite the prior implementation of process hazard analysis (PHA). One of the main reasons for this is the poor quality of the PHA process; with the main hazards not being properly identified, or properly controlled. Accordingly, based on the findings of 86 process safety management (PSM) audits, dozens of post-accident site resumption review meetings, and hundreds of PSM review sessions, this study examines the main deficiencies of management practice and PHA implementation in Taiwan, and presents several recommendations for improved PHA assessment techniques and procedures. The study additionally examines the feasibility for using PSM-related information, such as process safety information and process incident information, as a tool for further enhancing the PHA quality. Overall, the study suggests that, in addition to following the basic rules of PHA and requirements of OSHA (1992),management in Taiwan should also provide training in the enhanced assessment techniques proposed herein and take active steps to incorporate PSM information into the PHA framework in order to improve the general quality of PHA and reduce the likelihood of process safety accidents accordingly. 相似文献
10.
对旋风除尘器在静态载荷下的强度进行了分析,发现头部顶板是较薄弱部件.通过动态载荷系数(DLF)方法,研究了旋风除尘器承受动态粉尘爆炸压力载荷时提高使用强度的可能性,结果表明,一般情况下,由于载荷的动态特性导致设备强度的变化可以忽略. 相似文献
11.
The explosivity of dust clouds is greatly influenced by several parameters which depend on the operating conditions, such as the initial turbulence, temperature or ignition energy, but obviously also on the materials composition. In the peculiar case of a mixture of two combustible powders, the physical and chemical properties of both dusts have an impact on the cloud flammability and on its explosivity. Nevertheless, no satisfactory ‘mixing laws’ predicting the mixture behavior are currently available and the composition variable to be considered for such models greatly depend on the safety parameters which have to be determined: from volume ratios for some thermal exchanges and ignition phenomena, to surface proportions for some heterogeneous reactions and molar contents for chemical reactions. This study is mainly focused on graphite/magnesium mixtures as they are encountered during the decommissioning activities of UNGG reactors (Natural Uranium Graphite Gas). Due to the different nature and reactivity of both powders, these mixtures offer a wide range of interests. Firstly, the rate-limiting steps for the combustion of graphite are distinct from those of metals (oxygen diffusion or metal vaporization). Secondly, the flame can be thickened by the presence of radiation during metal combustion, whereas this phenomenon is negligible for pure graphite. Finally, the turbulence of the initial dust cloud is modified by the addition of a second powder. In order to assess the explosivity of graphite/magnesium clouds, a parametric study of the effects of storage humidity, particle size distribution, ignition energy, and initial turbulence has been carried out. In particular, it was clearly demonstrated that the turbulence significantly influences the explosion severity by speeding up the rate of heat release on the one hand and the oxygen diffusion through the boundary layer surrounding particles on the other hand. Moreover, it modifies the mean particle size and the spatial dust distribution in the test vessel, impacting the uniformity of the dust cloud. Thus, the present work demonstrates that the procedures developed for standard tests are not sufficient to assess the dust explosivity in industrial conditions and that an extensive parametric study is relevant to figure out the explosive behavior of solid/solid mixtures subjected to variations of operating conditions. 相似文献
12.
Conventional wisdom holds that the Hazard and Operability (HAZOP) study is the most thorough and complete process hazard analysis (PHA) method. Arguably, it is the most commonly-used PHA method in the world today. However, the HAZOP study is not without its weaknesses, many of which are not generally recognized. This article provides a critique of the method to assist study teams in compensating for them to the extent possible and to help guide the development of improved methods. 相似文献
13.
In order to develop better process hazard analysis (PHA) approaches, weaknesses in current approaches first must be identified and understood. Criteria can then be developed that new and improved approaches must meet. Current PHA methods share common weaknesses such as their inability specifically to address multiple failures, their identification of worst-consequence rather than worst-risk scenarios, and their focus on individual parts of a process. There has been no comprehensive analysis of these systemic weaknesses in the literature. Weaknesses are identified and described in this paper to assist in the development of improved approaches. Knowledge of the weaknesses also allows PHA teams to compensate for them to the extent possible when performing studies.Key criteria to guide the development of improved methods are proposed and discussed. These criteria include a structure that facilitates meaningful brainstorming of scenarios, ease of understanding and application of the method by participants, ability to identify scenarios efficiently, completeness of scenario identification, exclusion of extraneous scenarios, ease of updating and revalidating studies, and ease of meeting regulatory requirements. Some proposals are made for moving forward with the development of improved methods including the semi-automation of studies and improvements in the training of team members. 相似文献
14.
Fire is the most prevalent accident in natural gas facilities. In order to assess the risk of fire in a gas processing plant, a fault tree analysis (FTA) and event tree analysis (ETA) has been developed in this paper. By utilizing FTA and ETA, the paths leading to an outcome event would be visually demonstrated. The framework was applied to a case study of processing plant in South Pars gas complex. All major underlying causes of fire accident in a gas processing facility determined through a process hazard analysis (PHA). Fuzzy logic has been employed to derive likelihood of basic events in FTA from uncertain opinion of experts. The outcome events in event tree has been simulated by computer model to evaluate their severity. In the proposed methodology the calculated risk has the unit of cost per year which allows the decision makers to discern the benefit of their investment in safety measures and risk mitigation. 相似文献
15.
In powder handling and processing industry, location of dust emission can vary, with the suspended dust concentration assessment requiring installation of an immovable or wired equipment. For increased dust sensing, not limited by location within the facility, a portable suspended dust concentration measuring system is needed. In this study, a new method of sensing suspended dust concentration under daylight environment using the change in light extinction coefficient was developed. The method involves capturing images of the suspended dust cloud and then analyzing the light extinction coefficient. This method mitigated the environmental light scattering and absorption and eliminated the noise from the images obtained through a camera by calibration between two targets. Cornstarch, corn dust, and sawdust were used as test materials in this study. The light extinction coefficient (ε) was found to correlate with the suspended dust concentration, and the ε values depended on the dust properties. Mass extinction coefficient (K) was obtained for cornstarch, saw dust and corn dust, from known suspended dust concentrations using image analysis. The mass extinction coefficient of the three sample materials tested in this study were in the range of 0.03–0.04. This method of using light extinction coefficient can be used for real-time sensing of suspended dust concentration in both open and confined spaces. 相似文献
16.
17.
Process hazard analysis (PHA) is a cornerstone of process safety management programs. The quality of the PHA performed directly affects the level of risk tolerated for a process. The lower the quality of a PHA, the more likely higher risk will be tolerated. There are few requirements for PHA team members in the U.S. Occupational Safety and Health Administration's process safety management regulations. More detailed requirements for participation in a PHA are desirable.A competency management program should be used to ensure PHA practitioners and teams are appropriately qualified. Criteria for selecting PHA team leaders, or facilitators, and other team members are key to such a program and are described in this paper. The criteria cover both technical and personal attributes. Application of the criteria is described and team performance metrics, which can be used to correlate performance with the assessment of competency to validate the criteria and methods used, are discussed.Owing to the importance of the role played by team leaders, certification of their competency is desirable. Criteria for certification are described and their application is discussed. 相似文献
18.
管道燃气火灾爆炸事故树分析 总被引:3,自引:0,他引:3
在调查与研究的基础上,采用安全系统工程的方法,对城市管道燃气火灾爆炸事故进行了事故树分析。文中给出的由201个基本原因事件和81个逻辑门所构成的管道燃气火灾爆炸事故树分析图,直观地表现了各可能导致顶上事件发生的初始因素及其逻辑关系,经对FT的求解,得出了243个最小径集,指明了预防事故发生的可能途径;在对采用各可能预防途径的可行性,经济性,可操作性进行充分的考虑与比较后,确定出了城市管道燃气火灾爆炸事故预防措施,并做出安全检查表,以供现场实施使用;最后提出了提高燃气安全运行水平的建议。 相似文献
19.
In quantitative fault tree analysis of a system, exact failure probability values of components are utilized to calculate the failure probability of the system. However, in many real world problems, it is problematic to get precise and sufficient failure data of system components due to insufficient or imprecise information about components, changing environment or new components. A methodology has already been developed by employing fuzzy set theory for the system reliability evaluation by utilizing qualitative failure data of system components when quantitative failure data of components are inaccessible or insufficient. This paper extends the concept of fuzzy set to intuitionistic fuzzy set and proposes a novel approach to evaluate system failure probability using intuitionistic fuzzy fault tree analysis with qualitative failure data of system components. The qualitative failure data such as expert opinions are collected as linguistic terms. These linguistic terms are then quantified by triangular intuitionistic fuzzy numbers in form of membership function and non-membership function. Additionally, a method is developed for combining the different opinions of experts. To illustrate the applicability of proposed approach, a case study of the crude oil tank fire and explosion accident is performed. The obtained results are very close to the results from pre-existing approaches which confirm that the proposed approach is a more realistic alternative for the study of system reliability in intuitionistic fuzzy environment when quantitative failure data of system components are not known. To help decision makers for improving the security execution of the crude oil tank system, importance measures including Fussell-Vesely importance and cut sets importance are also executed. 相似文献
20.
灰关联分析在故障树诊断中的应用 总被引:8,自引:0,他引:8
介绍一种灰色诊断法.在故障诊断模式识别中,运用灰关联分析,依据故障树的底事件重要度,通过关联度计算及排序,对故障树分析中,各种故障模式发生的可能性大小作出了准确的判断,从而为处理事故的先后、缓急提供了依据. 相似文献