首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To provide an understanding of arsenic (As) and mercury (Hg) concentrations in soil, sediment, water, and fish tissues, samples were collected from a Mississippi River alluvial floodplain located in northwest Mississippi. As concentrations increased approximately an order of magnitude from water (5.12 micrograms/l) to fish tissues (36.99 micrograms/kg) and an additional two orders of magnitude in soils, lake sediments, and wetland sediments (5728, 5614, and 6746 micrograms/kg), respectively. Average Hg concentrations in water, soils, lake sediments, and fish were 2.16 micrograms/l, 55.1, 14.5 and 125 micrograms/kg, respectively. As and Hg concentrations were within published ranges for uncontaminated soil, water, and sediments. As concentrations represented a low risk. Hg concentrations were also low but showed a greater tendency to concentrate in fish tissue. The dominant mode of entry of these materials into aquatic systems is through storm-generated runoff. Since both metals accompany sediments, agricultural conservation practices such as reduced tillage, buffer riparian strips, and bordering sediment ponds or drainage wetlands will minimize watershed input to aquatic systems.  相似文献   

2.
Sediments from the Castilseras reservoir, located downstream on the Valdeazogues River in the Almadén mercury district, were collected to assess the potential contamination status related to metals(oids) associated with river sediment inputs from several decommissioned mines. Metals(oids) concentrations in the reservoir sediments were investigated using different physical and chemical techniques. The results were analyzed by principal component analysis (PCA) to explain the correlations between the sets of variables. The degree of contamination was evaluated using the enrichment factor (EF) and the geoaccumulation index (Igeo). PCA revealed that the silty fraction is the main metals(oids) carrier in the sediments. Among the potentially harmful elements, there is a group (Al, Cr, Cu, Fe, Mn, Ni, and Zn) that cannot be strictly correlated to the mining activity since their concentrations depend on the lithological and edaphological characteristics of the materials. In contrast, As, Co, Hg, Pb, and S showed significant enrichment and contamination, thus suggesting relevant contributions from the decommissioned mines through fluvial sediment inputs. As far as Hg and S are concerned, the high enrichment levels pose a question concerning the potential environmental risk of transfer of the organic forms of Hg (mainly methylmercury) from the bottom sediments to the aquatic food chain.  相似文献   

3.
Mercury is of particular concern amongst global environmental pollutants, with abundant contaminated sites worldwide, many of which are associated with mining activities. Asturias (Northwest of Spain) can be considered an Hg metallogenic province with abundant epithermal-type deposits, whose paragenetic sequences include also As-rich minerals. These mines were abandoned long before the introduction of any environmental regulations to control metal release from these sources. Consequently, the environment is globally affected, as high metal concentrations have been found in soils, waters, sediments, plants, and air. In this paper, a characterization of the environmental affection caused by Hg mining in nine Asturian mine sites is presented, with particular emphasis in Hg and As contents. Hg concentrations found in the studied milieu are similar and even higher than those reported in previous studies for other mercury mining districts (mainly Almadén and Idrija). Furthermore, the potential adverse health effects of exposure to these elements in the considered sites in this district have been assessed.  相似文献   

4.
Reduction of divalent mercury and subsequent emission to the atmosphere has been identified as loss process from surface snow, but its mechanism and importance are still unclear. The amount of mercury that stays in the snow pack until spring is of significance, because during snow melt it may be released to the aquatic environment and enter the food web. Better knowledge of its fate in snow might further assist the interpretation of ice core data as paleo-archive. Experiments were performed under well-controlled laboratory conditions in a coated wall flow tube at atmospheric pressure and irradiated with light between 300 nm and 420 nm. Our results show that the presence of benzophenone and of oxalic acid significantly enhances the release of mercury from the ice film during irradiation, whereas humic acid is less potent to promote the reduction. Further it was found that oxygen or chloride, and acidic conditions lowered the photolytically induced mercury release in the presence of benzophenone, while the release got larger with increasing temperatures.  相似文献   

5.
Paddy soil and sediment samples collected from the Vellar River watershed, Tamil Nadu state, South India from December, 1987 to January, 1989 were analysed to understand the comprehensive behaviour of organochlorine insecticides (HCH and DDT) in the tropical environment. HCH (BHC) showed higher levels in soil during wet season, reflecting the application of technical HCH largely during the flowering season of rice. On the other hand, DDT residues were low and did not show a significant seasonal trend in soil or sediment, indicating small quantities of DDT utilized at present for agricultural purposes in India. When compared to soil, the residue levels in sediments are low and the seasonal variation is less pronounced. This indicates that in tropical watersheds, the relative flux of residues into the aquatic environment is smaller than the amount volatilized to the atmosphere.  相似文献   

6.
The purpose of our study was to test the hypothesis that dissolved gaseous mercury (DGM) production and evasion is directly proportional to the loading rate of inorganic mercury [Hg(II)] to aquatic ecosystems. We simulated different rates of atmospheric mercury deposition in 10-m diameter mesocosms in a boreal lake by adding multiple additions of Hg(II) enriched with a stable mercury isotope (202Hg). We measured DGM concentrations in surface waters and estimated evasion rates using the thin-film gas exchange model and mass transfer coefficients derived from sulfur hexafluoride (SF6) additions. The additions of Hg(II) stimulated DGM production, indicating that newly added Hg(II) was highly reactive. Concentrations of DGM derived from the experimental Hg(II) additions (“spike DGM”) were directly proportional to the rate of Hg(II) loading to the mesocosms. Spike DGM concentrations averaged 0.15, 0.48 and 0.94 ng l−1 in mesocosms loaded at 7.1, 14.2, and 35.5 μg Hg m−2 yr−1, respectively. The evasion rates of spike DGM from these mesocosms averaged 4.2, 17.2, and 22.3 ng m−2 h−1, respectively. The percentage of Hg(II) added to the mesocosms that was lost to the atmosphere was substantial (33–59% over 8 weeks) and was unrelated to the rate of Hg(II) loading. We conclude that changes in atmospheric mercury deposition to aquatic ecosystems will not change the relative proportion of mercury recycled to the atmosphere.  相似文献   

7.

Due to its adverse impact on health, as well as its global distribution, long atmospheric lifetime and propensity for deposition in the aquatic environment and in living tissue, the US Environmental Protection Agency (US EPA) has classified mercury and its compounds as a severe air quality threat. Such widespread presence of mercury in the environment originates from both natural and anthropogenic sources. Global anthropogenic emission of mercury is evaluated at 2000 Mg year−1. According to the National Centre for Emissions Management (Pol. KOBiZE) report for 2014, Polish annual mercury emissions amount to approximately 10 Mg. Over 90% of mercury emissions in Poland originate from combustion of coal.

The purpose of this paper was to understand mercury behaviour during sub-bituminous coal and lignite combustion for flue gas purification in terms of reduction of emissions by active methods. The average mercury content in Polish sub-bituminous coal and lignite was 103.7 and 443.5 μg kg−1. The concentration of mercury in flue gases emitted into the atmosphere was 5.3 μg m−3 for sub-bituminous coal and 17.5 μg m−3 for lignite. The study analysed six low-cost sorbents with the average achieved efficiency of mercury removal from 30.6 to 92.9% for sub-bituminous coal and 22.8 to 80.3% for lignite combustion. Also, the effect of coke dust grain size was examined for mercury sorptive properties. The fine fraction of coke dust (CD) adsorbed within 243–277 μg Hg kg−1, while the largest fraction at only 95 μg Hg kg−1. The CD fraction < 0.063 mm removed almost 92% of mercury during coal combustion, so the concentration of mercury in flue gas decreased from 5.3 to 0.4 μg Hg m−3. The same fraction of CD had removed 93% of mercury from lignite flue gas by reducing the concentration of mercury in the flow from 17.6 to 1.2 μg Hg m−3. The publication also presents the impact of photochemical oxidation of mercury on the effectiveness of Hg vapour removal during combustion of lignite. After physical oxidation of Hg in the flue gas, its effectiveness has increased twofold.

  相似文献   

8.
Contaminant concentrations were determined for media associated with 13 Florida seagrass beds. Concentrations of 10 trace metals were more commonly detected in surface water, sediment and two seagrass species than PAHs, pesticides and PCBs. Concentrations of copper and arsenic in surface water exceeded Florida aquatic life criteria more frequently than other trace elements. Total organic carbon, mercury, chromium, zinc, total chlordane, total PAHs, total PCBs, DDD and DDE were significantly greater in seagrass-rooted sediments than adjacent non-vegetated sediments. Total DDT, DDD, DDE, total chlordane, arsenic, copper and nickel exceeded proposed sediment quality guidelines at six of 13 grass beds. Pesticides, PAHs, and PCBs were below detection in seagrass tissues. Mercury, cadmium, nickel, lead and silver were detected in 50% or more of the tissues for Thalassia testudinum (turtle grass) and Halodule wrightii (shoal grass). Spatial, interspecific and tissue differences were usually an order of magnitude or less.  相似文献   

9.
We compare a global model of mercury to sediment core records to constrain mercury emissions from the 19th century North American gold and silver mining. We use information on gold and silver production, the ratio of mercury lost to precious metal produced, and the fraction of mercury lost to the atmosphere to calculate an a priory mining inventory for the 1870s, when the historical gold rush was at its highest. The resulting global mining emissions are 1630 Mg yr?1, consistent with previously published studies. Using this a priori estimate, we find that our 1880 simulation over-predicts the mercury deposition enhancements archived in lake sediment records. Reducing the mining emissions to 820 Mg yr?1 improves agreement with observations, and leads to a 30% enhancement in global deposition in 1880 compared to the pre-industrial period. For North America, where 83% of the mining emissions are located, deposition increases by 60%. While our lower emissions of atmospheric mercury leads to a smaller impact of the North American gold rush on global mercury deposition than previously estimated, it also implies that a larger fraction of the mercury used in extracting precious metals could have been directly lost to local soils and watersheds.  相似文献   

10.
Mercury in salt marshes ecosystems: Halimione portulacoides as biomonitor   总被引:1,自引:0,他引:1  
Mercury concentrations were quantified in Halimione portulacoides (roots, stems and leaves) as well as in sediments from eight Portuguese estuarine systems, covering seventeen salt marshes with distinct degrees of mercury contamination. The concentration of mercury in the sediments ranged from 0.03 to 17.0 microg g(-1). The results show that the accumulation of mercury differed according to the organ of the plant examined and the concentration of mercury in the sediments. Higher mercury concentrations were found in the roots (up to 12.9 microg g(-1)) followed by the leaves (up to 0.12 microg g(-1)), while the stems had the lowest concentrations (up to 0.056 microg g(-1)). A linear model explained the relation between the concentrations of mercury in the different plant organs: roots and stems (R(adj)(2)=0.75), stems and leaves (R(adj)(2)=0.85) and roots and leaves (R(adj)(2)=0.78). However, the results show that the variation of mercury concentration in the roots versus mercury concentration in the sediments was best fitted by a sigmoidal model (R(adj)(2)=0.89). Mercury accumulation in the roots can be described in three steps: at a low range of mercury concentrations in the sediments (from 0.03 up to 2 microg g(-1)), the accumulation of mercury in roots is also low reaching a maximum concentration of 1.3 microg g(-1); the highest rates of mercury accumulation in the roots occur in a second step, until the concentrations of mercury in the sediments reach approximately 4.5 microg g(-1); after reaching this maximum value, the rate of mercury accumulation in the roots slows down leading to a plateau in the concentration of mercury in the roots of about 9.4 microg g(-1), which corresponds to a mercury concentration in the sediments of about 11 microg g(-1). A linear model explained also the accumulation of mercury in leaves versus the mercury concentration in the sediments (R(adj)(2)=0.88). Differences in responses of roots and leaves are explained by the dynamics of the plant organs: old roots are mineralised in situ close to new roots, while leaves are renewed. Previous studies have already shown that H. portulacoides is a bioindicator for mercury and the results from this work sustain that H. portulacoides may also be used as a biomonitor for mercury contamination in salt marshes. Nevertheless, caution should be taken in the application of the models, concerning the life cycle of the species and the spatial variability of the systems.  相似文献   

11.
Mercury in sediment and fish from North Mississippi Lakes   总被引:7,自引:0,他引:7  
Sediments and/or fish were collected from Sardis, Enid and Grenada Lakes, which are located in three different watersheds in North Mississippi, in order to assess mercury contamination. The mean total mercury concentration in sediments from Enid Lake in 1997 was 0.154 mg Hg/kg, while 1998 sediment concentrations in Sardis, Enid and Grenada Lakes were 0.112, 0.088 and 0.133 mg Hg/kg, respectively. Sediment mercury concentrations in 1999 were similar in all three lakes but, generally lower than 1998. Mean total mercury concentrations in edible fillets of fish collected from Enid Lake in 1998 were above the human health FDA action level (>1.0 mg Hg/kg) for bass (1.40), crappie (1.69) and gar (1.89); however, tissue concentrations were less than 1.0 mg Hg/kg in carp (0.63) and catfish (0.82). Human hazard indexes for each species was 1 for both adults and children, indicating that there is a potential for toxic effects to occur. In addition, calculated consumption limits indicate that adults may consume 4–12 oz. of fish per month, depending on the species consumed. For children, 2 oz. per month may be consumed. Further studies are needed to determine the exact environmental consequences and human health impacts associated with mercury contamination in North Mississippi and the Southeastern United States.  相似文献   

12.
The fate of hydrophobic organic pollutants in the aquatic environment is controlled by a variety of physical, chemical and biological processes. Some of the most important are physical transport, chemical and biological transformations, and distribution of these compounds between the various environmental compartments (atmosphere, water, sediments and biota). The major biogeochemical processes that control the fate of hydrophobic organic compounds in the aquatic environment are reviewed. These processes include evaporation, solubilization, interaction with dissolved organic matter, sediment-water partitioning, bioaccumulation and degradation. Physico-chemical parameters used to predict the aquatic fate of such compounds are also discussed.  相似文献   

13.
Black carbon: the reverse of its dark side   总被引:16,自引:0,他引:16  
The emission of black carbon is known to cause major environmental problems. Black carbon particles contribute to global warming, carry carcinogenic compounds and cause serious health risks. Here, we show another side of the coin. We review evidence that black carbon may strongly reduce the risk posed by organic contaminants in sediments and soils. Extremely efficient sorption to black carbon pulls highly toxic polycyclic aromatic hydrocarbons, polychlorinated biphenyls, dioxins, polybrominated diphenylethers and pesticides into sediments and soils. This increased sorption is general, but strongest for planar (most toxic) compounds at environmentally relevant, low aqueous concentrations. Black carbon generally comprises about 9% of total organic carbon in aquatic sediments (median value of 300 sediments), and then may reduce uptake in organisms by up to two orders of magnitude. This implies that current environmental risk assessment systems for these contaminants may be unnecessarily safe.  相似文献   

14.
This paper presents a comprehensive atmospheric global and regional mercury model and its capability in describing the atmospheric cycling of mercury. This is an on-line model (integrated within the Canadian operational environmental forecasting and data assimilation system) which can be used to understand the role of meteorology in mercury cycling (atmospheric pathways), the inter-annual variability of mercury and can be evaluated against observations on global scales. This is due to the fact that the model uses a combination of actual observed and predicted meteorological state of the atmosphere at high resolution to integrate the model as opposed to the climatological approach used in existing global mercury models. The model was integrated and evaluated on global scale using only anthropogenic emissions. North to south gradients in mercury concentrations, seasonal variability, dry and wet deposition and vertical structure are well simulated by the model. The model was used to explain the observed seasonal variations in atmospheric mercury circulation. The results from this study include a global animation of surface air concentrations of total gaseous mercury for 1997.  相似文献   

15.
The mining of gold can lead to toxic metals such as mercury (Hg) contaminating watercourses as by-products. The Reedy Creek sub-catchment, in northeast Victoria, Australia, was mined for gold in the 1850s. In 1998, samples were taken from six watercourses to measure any remaining toxic metal contamination in sediments and surface waters from two creeks with no previous gold mining (controls) and four that were mined. Although mean concentrations of Hg (measured using an ICP-OES) in sediments were below worldwide background levels, individual sites along Reedy Creek had slightly elevated Hg concentrations. In contrast, the Hg concentrations in the surface waters were above background levels. Temporal fluxes of very high Hg concentrations in the surface waters during periods of first flow and flood events revealed that Hg concentrations in the surface waters may, at certain times of the year, exceed all Australian and New Zealand Environment and Conservation Council (National Water Quality Management Strategy. Australian Water Quality Guidelines for Fresh and Marine Waters, ANZECC, 2000) guidelines for water use and the protection of the aquatic ecosystem.  相似文献   

16.
The waste seawater discharged in coastal areas from coal-fired power plants equipped with a seawater desulfurization system might carry pollutants such as mercury from the flue gas into the adjacent seas. However, only very limited impact studies have been carried out. Taking a typical plant in Xiamen as an example, the present study targeted the distribution and sea–air transfer flux of volatile mercury in seawater, in order to trace the fate of the discharged mercury other than into the sediments. Samples from 28 sampling sites were collected in the sea area around two discharge outlets of the plant, daily and seasonally. Total mercury, dissolved gaseous mercury and dissolved total mercury in the seawater, as well as gaseous elemental mercury above the sea surface, were investigated. Mean concentrations of dissolved gaseous mercury and gaseous elemental mercury in the area were 183 and 4.48 ng m?3 in summer and 116 and 3.92 ng m?3 in winter, which were significantly higher than those at a reference site. Based on the flux calculation, the transfer of volatile mercury was from the sea surface into the atmosphere, and more than 4.4 kg mercury, accounting for at least 2.2 % of the total discharge amount of the coal-fired power plant in the sampling area (1 km2), was emitted to the air annually. This study strongly suggested that besides being deposited into the sediment and diluted with seawater, emission into the atmosphere was an important fate for the mercury from the waste seawater from coal-fired power plants.  相似文献   

17.
Mercury (Hg) speciation and mobility were determined in calcines and waste rocks collected from 9 Hg mines in China. Total Hg (THg) concentrations in the mine wastes varied widely in different Hg mines (with a range of 0.369 to 2,620 mg kg?1). Cinnabar is the dominant form of Hg in the mine wastes. However, Hg2+ and Hg0 concentrations in the calcines were significantly higher than these in the waste rocks, which suggested the retorting can produce large amounts of by-product Hg compounds. The THg and Hg0 concentrations in certain mine wastes exceeded soil guidelines recommended by US Environmental Protection Agency; while total soluble Hg concentrations of leachates in certain mine wastes exceeded National Surface Water Quality Standard of China. Mine wastes are important Hg pollution sources to the aquatic ecosystem and atmosphere.  相似文献   

18.
Average mercury concentrations in largemouth bass from Rogers Quarry in east Tennessee were found to increase steadily following the elimination of selenium-rich discharges of fly ash to the quarry in 1989. From 1990 to 1998, mean mercury concentrations (adjusted to compensate for the covariance between individual fish weight and mercury concentration) in bass rose from 0.02 to 0.61 mg/kg. There was no indication that the rate increase was slowing or that mercury concentrations in fish were approaching a plateau or steady state. Mean selenium concentrations in bass declined from 3 to 1 mg/kg over the first five years of the study, but remained at 1-1.5 mg/kg (about twice typical concentrations in bass from local reference sites) for the last three years of the study. Gross physical abnormalities were common in fish from the site in the first three years after elimination of fly ash discharges but disappeared after two more years. Although it remains possible that other chemical or physical changes related to fly ash disposal in the system were associated with increased mercury bioaccumulation, the most likely explanation is that selenium played a critical role. It appears as though aqueous selenium enrichment was capable of having a profound effect on mercury bioaccumulation in this system but at the cost of causing a high incidence of gross abnormalities in fish. However, it is possible that selenium concentrations between the national ambient water quality criterion for the protection of aquatic life, 5 microg/l, and that now found in Rogers Quarry (<2 microg/l) could reduce mercury bioaccumulation without causing adverse effects on aquatic biota and fish-eating wildlife.  相似文献   

19.
Ecological effects, transport, and fate of mercury: a general review   总被引:42,自引:0,他引:42  
Boening DW 《Chemosphere》2000,40(12):26-1351
Mercury at low concentrations represents a major hazard to microorganisms. Inorganic mercury has been reported to produce harmful effects at 5 μg/l in a culture medium. Organomercury compounds can exert the same effect at concentrations 10 times lower than this. The organic forms of mercury are generally more toxic to aquatic organisms and birds than the inorganic forms. Aquatic plants are affected by mercury in water at concentrations of 1 mg/l for inorganic mercury and at much lower concentrations of organic mercury. Aquatic invertebrates widely vary in their susceptibility to mercury. In general, organisms in the larval stage are most sensitive. Methyl mercury in fish is caused by bacterial methylation of inorganic mercury, either in the environment or in bacteria associated with fish gills or gut. In aquatic matrices, mercury toxicity is affected by temperature, salinity, dissolved oxygen and water hardness. A wide variety of physiological, reproductive and biochemical abnormalities have been reported in fish exposed to sublethal concentrations of mercury. Birds fed inorganic mercury show a reduction in food intake and consequent poor growth. Other (more subtle) effects in avian receptors have been reported (i.e., increased enzyme production, decreased cardiovascular function, blood parameter changes, immune response, kidney function and structure, and behavioral changes). The form of retained mercury in birds is more variable and depends on species, target organ and geographical site. With few exceptions, terrestrial plants (woody plants in particular) are generally insensitive to the harmful effects of mercury compounds.  相似文献   

20.
Lafabrie C  Major KM  Major CS  Cebrián J 《Chemosphere》2011,82(10):1393-1400
Arsenic (As) and mercury (Hg) are among the most toxic metals/metalloids. The overall goal of this study was to investigate the bioaccumulation of these trace elements in Vallisneria neotropicalis, a key trophic species in aquatic environments. For this purpose, As and Hg concentrations were determined in sediments and natural populations of V. neotropicalis in sub-estuaries of Mobile Bay (Alabama, USA), differing with respect to past and present anthropogenic impact. Analyses indicate that the Fish River is the most contaminated among the sub-estuaries investigated; levels of As found in Fish River sediments fall within a range that could potentially cause adverse effects in biota. Sediment As concentrations were only moderately correlated with those in V. neotropicalis; no correlation was found between sediment and plant Hg levels. However, several parameters could have masked such potential relationships (e.g., differences in sediment characteristics and “biological dilution” phenomena). Results presented herein highlight the numerous parameters that can influence metal/metalloids accumulation in aquatic plants as well as species-specific responses to trace element contamination. Finally, this study underscores the need for further investigation into contaminant bioaccumulation in ecologically and economically important coastal environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号