首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 A method of determining the chlorine (Cl) and sulfur (S) in municipal solid waste (MSW) was studied. The quartz furnace method was improved in two ways: recovery from ash by hot extraction with dilute nitric acid, and avoidance of the volatilization of alkali (earth) metal chlorides by setting the sample combustion temperature at 600°C. In a comparison with the bomb method, using nine sets of kitchen garbage and waste plastics, the bomb method yielded a 15%–25% lower value than the improved quartz furnace method. Combustion in the bomb was frequently incomplete, resulting in recovery losses of Cl and S. The average kitchen garbage involved 5.2 mg Cl/g, of which at least 24.1% would be converted to HCl. Plastics contained 23 mg Cl/g generating 88.1% HCl on average. In the same way, kitchen garbage contained 3.0 mg S/g, generating 52.3% SO x , whereas plastics contained 1.1 mg S/g with 55.1% SO x formation. Received: March 20, 2002 / Accepted: October 13, 2002  相似文献   

2.
Bio-drying has been applied to improve the heating value of municipal solid waste (MSW) prior to combustion. In the present study, evolution of heavy metals in MSW during bio-drying and subsequent combustion was studied using one aerobic and two combined hydrolytic-aerobic scenarios. Heavy metals were concentrated during bio-drying and transformed between different metal fractions, namely the exchangeable, carbonate-bound, iron- and manganese-oxides-bound, organic-matter-bound and residual fractions. The amounts of heavy metals per kg of bio-dried MSW transferred into combustion flue gas increased with bio-drying time, primarily due to metals enrichment from organics degradation. Because of their volatility, the partitioning ratios of As and Hg in flue gas remained stable so that bio-drying and heavy metal speciation had little effect on their transfer and partitioning during combustion. In contrast, the partitioning ratios of Pb, Zn and Cu tended to increase after bio-drying, which likely enhanced their release potential during combustion.  相似文献   

3.
The concentrations of heavy, trace elements and major ions measuredin the Uluda and Bursa aerosols were investigated to assess size distributions, spatial and temporal variability, sources and source regions affecting the composition of aerosols in Uluda and Bursa. A total of 81 samples were collected in two sites, one in Bursa city and another in the Uluda Mountain during two sampling campaigns. Daily samples were collected using a high volume sampler on Whatman 41 cellulose filters in Uluda, while three days interval samples were collected in Bursa using an automatic dichotomous sampler on PTFE Teflon filters. Samples were analysed for 15 trace and heavy metals (Al, Fe, Ba, Na, Mg, K, Mn, Ca, Cu), (V, Pb, Cd, Cr, Ni, Zn), and 4 major ions (SO4 2-, NO3 -, Cl-), (NH4 +) using ICP-AES, GFAAS, HPLC and UV/VIS Spectrophotometer,respectively. In general, concentrations of the metals measured inUluda aerosols were lower than those in Bursa. The concentrations of crustal elements were higher in summer than winter, while anthropogenic elements had higher concentrations in winter than summer. Most of the mass of crustal elements was concentrated in the coarse mode while the mass of the heavy metals was concentrated in the fine mode. Factor analysis revealed four factors with sources including crustal, industrial and combustion. Back trajectory calculations were used to determine long range contributions. These calculations showed that contributions were mostly from European countries, former Soviet Union countries, Black Sea and North Africa.  相似文献   

4.
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are formed during waste incineration and in waste-to-energy boilers. Incomplete combustion, too short residence times at low combustion temperatures (<700 °C), incineration of electronic waste and plastic waste containing chlorine are all factors influencing the formation of PCDD/Fs in boilers. The impact of chlorine and catalysing metals (such as copper and iron) in the fuel on PCDD/F formation was studied in a 12 MWth circulating fluidised bed (CFB) boiler. The PCDD/F concentrations in the raw gas after the convection pass of the boiler and in the fly ashes were compared. The fuel types were a so-called clean biomass with low content of chlorine, biomass with enhanced content of chlorine from supply of PVC, and solid recovered fuel (SRF) which is a waste fuel containing higher concentrations of both chlorine, and catalysing metals. The PCDD/F formation increased for the biomass with enhanced chlorine content and it was significantly reduced in the raw gas as well as in the fly ashes by injection of ammonium sulphate. A link, the alkali chloride track, is demonstrated between the level of alkali chlorides in the gas phase, the chlorine content in the deposits in the convection pass and finally the PCDD/F formation. The formation of PCDD/Fs was also significantly reduced during co-combustion of SRF with municipal sewage sludge (MSS) compared to when SRF was fired without MSS as additional fuel.  相似文献   

5.
In order to separate and reuse heavy and alkali metals from flue gas during sewage sludge incineration, experiments were carried out in a pilot incinerator. The experimental results show that most of the heavy and alkali metals form condensed phase at temperature above 600 degrees C. With the addition of 5% calcium chloride into sewage sludge, the gas/solid transformation temperature of part of the metals (As, Cu, Mg and Na) is evidently decreased due to the formation of chloride, while calcium chloride seems to have no significant influence on Zn and P. Moreover, the mass fractions of some heavy and alkali metals in the collected fly ash are relatively high. For example, the mass fractions for Pb and Cu in the fly ash collected by the filter are 1.19% and 19.7%, respectively, which are well above those in lead and copper ores. In the case of adding 5% calcium chloride, the heavy and alkali metals can be divided into three groups based on their conversion temperature: Group A that includes Na, Zn, K, Mg and P, which are converted into condensed phase above 600 degrees C; Group B that includes Pb and Cu which solidify when the temperature is above 400 degrees C; and Group C that includes As, whose condensation temperature is as low as 300 degrees C.  相似文献   

6.
The US fleet of coal-fired power plants, with generating capacity of just over 300 GW, is known to be a major source of domestic mercury (Hg) emissions. To address this, in March 2005, the Environmental Protection Agency (EPA) promulgated the Clean Air Mercury Rule (CAMR) to reduce emissions of mercury from these plants. It is generally believed that most of the initial (Phase I) mercury reductions will come as a co-benefit of existing controls used to remove particulate matter (PM), SO2, and NO X . Deeper reductions in emissions (as required in Phase II of CAMR) may require the installation of mercury-specific control technology. Duct injection of activated carbon sorbents is the mercury-specific control technology that has been most widely studied and has been demonstrated over a wide range of coal types and combustion conditions. The effectiveness of the mercury control options (both “co-benefit control” and “mercury-specific control”) is significantly impacted by site-specific characteristics such as the combustion conditions, the configuration of existing air pollution controls, and the type of coal burned. This paper identifies the role of coal properties and combustion conditions in the capture of mercury by fly ash and injected sorbents.  相似文献   

7.
The use of soluble PO43− as a heavy metal chemical stabilization agent was evaluated for a dust generated from melting or vitrification of municipal solid waste combustion residues. Vitrification dusts contain high concentrations of volatile elements such as Cl, Na, K, S, Pb, and Zn. These elements are present in the dusts largely as simple salts (e.g. PbCl2, ZnSO4) which are highly leachable. At an experimental dose of 0.4 moles of soluble PO43− per kg of residue, the pH-dependent leaching (pH 5,7,9) showed that the treatment was able to reduce equilibrium concentrations by factors of 3 to 100 for many metals; particularly Cd, Cu, Pb and Zn. Bulk and surface spectroscopies showed that the insoluble reaction products are tertiary metal phosphate [e.g. Zn3(PO4)2] and apatite [e.g. Pb5(PO4)3Cl] family minerals. Geochemical thermodynamic equilibrium modeling showed that apatite family and tertiary metal phosphate phases act as controlling solids for the equilibrium concentrations of Ca2+, Zn2+, Pb2+, Cu2+, and Cd2+ in the leachates during pH-dependent leaching. Both end members and ideal solid solutions were seen to be controlling solids. Soluble phosphate effectively converted soluble metal salts into insoluble metal phosphate phases despite the relatively low doses and dry mixing conditions that were used. Soluble phosphate is an effective stabilization agent for divalent heavy metals in melting dusts where leachable metals are present in high concentrations.  相似文献   

8.

Phosphorus rich sewage sludge ash is a promising source to produce phosphorus recycling fertilizer. However, the low plant availability of phosphorus in these ashes makes a treatment necessary. A thermochemical treatment (800–1000 °C) with alkali additives transforms poorly plant available phosphorus phases to highly plant available calcium alkali phosphates (Ca,Mg)(Na,K)PO4. In this study, we investigate the use of K2SO4 as additive to produce a phosphorus potassium fertilizer in laboratory-scale experiments (crucible). Pure K2SO4 is not suitable as high reaction temperatures are required due to the high melting point of K2SO4. To overcome this barrier, we carried out series of experiments with mixtures of K2SO4 and Na2SO4 resulting in a lower economically feasible reaction temperature (900–1000 °C). In this way, the produced phosphorus potassium fertilizers (8.4 wt.% K, 7.6 wt.% P) was highly plant available for phosphorus indicated by complete extractable phosphorus in neutral ammonium citrate solution. The added potassium is, in contrast to sodium, preferably incorporated into silicates instead of phosphorus phases. Thus, the highly extractable phase (Ca,Mg)(Na,K)PO4 in the thermochemical products contain less potassium than expected. This preferred incorporation is confirmed by a pilot-scale trial (rotary kiln) and thermodynamic calculation.

  相似文献   

9.
The present work deals with the application of biotechnology for the mobilization of metals from different solid wastes: end of life industrial catalysts, heavy metal contaminated marine sediments and fluorescent powders coming from a cathode ray tube glass recycling process. Performed experiments were aimed at assessing the performance of acidophilic chemoautotrophic Fe/S-oxidizing bacteria for such different solid matrices, also focusing on the effect of solid concentration and of different substrata. The achieved results have evidenced that metal solubilization seems to be strongly influenced by the metal speciation and partitioning in the solid matrix. No biological effect was observed for Ni, Zn, As, Cr mobilization from marine sediments (34%, 44%, 15%, 10% yields, respectively) due to metal partitioning. On the other hand, for spent refinery catalysts (Ni, V, Mo extractions of 83%, 90% and 40%, respectively) and fluorescent powders (Zn and Y extraction of 55% and 70%, respectively), the improvement in metal extraction observed in the presence of a microbial activity confirms the key role of Fe/S oxidizing bacteria and ferrous iron. A negative effect of solid concentration was in general observed on bioleaching performances, due to the toxicity of dissolved metals and/or to the solid organic component.  相似文献   

10.
Metal capture experiments were carried out in an atmospheric fluidized bed incinerator to investigate the effect of sulfur and chlorine on metal capture efficiency and the potential for simultaneous capture of metal, sulfur and chlorine by sorbents. In addition to experimental investigation, the effect of sulfur and chlorine on the metal capture process was also theoretically investigated through performing equilibrium calculations based on the minimization of system free energy. The observed results have indicated that, in general, the existence of sulfur and chlorine enhances the efficiency of metal capture especially at low to medium combustion temperatures. The capture mechanisms appear to include particulate scrubbing and chemisorption depending on the type of sorbents. Among the three sorbents tested, calcined limestone is capable of capturing all the three air pollutants simultaneously. The results also indicate that a mixture of the three sorbents, in general, captures more metals than a single sorbent during the process. In addition, the existence of sulfur and chlorine apparently enhances the metal capture process.  相似文献   

11.
This study investigates the characteristic of heavy metals (Pb, Zn, Cu, Cd, Cr, Ni and As) in biochar derived from sewage sludge at different pyrolysis temperatures (300, 400, 500, 600 and 700 °C). The heavy metal concentrations, chemical speciation distribution, leaching toxicity, and bio-available contents were investigated using ICP-OES after microwave digestion, a sequential extraction procedure recommended by the Community Bureau of Reference (BCR), an improved nitric acid–sulphuric acid method, and diethylenetriamine pentaacetic acid (DTPA) extraction method, respectively. The results showed that a great percentage of the heavy metals remained in biochar, the concentrations of heavy metals in biochar (except Cd in B7) were higher than that in sludge, and the enrichment of the heavy metals in biochar enhanced with the pyrolysis temperature. Although the effect of pyrolysis temperature on the chemical speciation distribution, the leaching toxicity and the bio-available contents of heavy metals in biochar was inconsistent, the potential risk of biochar on soil and groundwater contamination was lower than sewage sludge.  相似文献   

12.
The effectiveness of inorganic alumino-silicate sorbents (alumina and kaolinite) to adsorb airborne lead and cadmium from the effluent stream of a simulated waste incinerator was studied. A 20 kW (68,000 BTU/h) flow reactor was used to achieve the temperature and residence times typical of a waste incinerator. Solutions containing lead or cadmium were introduced yielding airborne metals concentrations between 15 and 150 ppm. Gas samples were drawn into a particle impactor that collected the airborne particles and condensed phase metal aerosols, separating them into ten size ranges from 0.2 μm to greater than 10 μm. Metals to sorbent mass ratios between 0.03 and 1.56 were investigated. Scavenging efficiency increased as the ratio of sorbent to injected metal mass was increased. The scavenging efficiencies were as high as 76% for lead scavenged by kaolinite to as low as 14% for cadmium scavenged by alumina.  相似文献   

13.
Gasification of solid waste for energy has significant potential given an abundant feed supply and strong policy drivers. Nonetheless, significant ambiguities in the knowledge base are apparent. Consequently this study investigates sulphur mechanisms within a novel two stage fluid bed-plasma gasification process. This paper includes a detailed review of gasification and plasma fundamentals in relation to the specific process, along with insight on MSW based feedstock properties and sulphur pollutant therein. As a first step to understanding sulphur partitioning and speciation within the process, thermodynamic modelling of the fluid bed stage has been performed. Preliminary findings, supported by plant experience, indicate the prominence of solid phase sulphur species (as opposed to H2S) - Na and K based species in particular. Work is underway to further investigate and validate this.  相似文献   

14.
Reusing steel slag as an aggregate for road construction requires to characterize the leaching kinetics and metal releases. In this study, basic oxygen furnace (BOF) steel slag were subjected to batch leaching tests at liquid to solid ratios (L/S) of 10 and 100 over 30 days; the leachate chemistry being regularly sampled in time. A geochemical model of the steel slag is developed and validated from experimental data, particularly the evolution with leaching of mineralogical composition of the slag and trace element speciation. Kinetics is necessary for modeling the primary phase leaching, whereas a simple thermodynamic equilibrium approach can be used for secondary phase precipitation. The proposed model simulates the kinetically-controlled dissolution (hydrolysis) of primary phases, the precipitation of secondary phases (C-S-H, hydroxide and spinel), the pH and redox conditions, and the progressive release of major elements as well as the metals Cr and V. Modeling indicates that the dilution effect of the L/S ratio is often coupled to solubility-controlled processes, which are sensitive to both the pH and the redox potential. A sensitivity analysis of kinetic uncertainties on the modeling of element releases is performed.  相似文献   

15.
The paper is concerned with biohydrometallurgical methods of cadmium recovery from spent Ni–Cd batteries. Cd leaching efficiency from electrode material in different media (H2SO4 and Fe2(SO4)3 solutions), at different Fe(III) concentrations and using the bacteria Acidithiobacillus ferrooxidans were investigated. The main aim of this study was to understand which from the bioleaching products (sulphuric acid or ferric sulphate) play a main role in the bioleaching process of Cd recovery. The influence of Fe ions on Cd leachability was confirmed. The best leaching efficiency of Cd (100%) was reached by bioleaching and also by leaching in Fe2(SO4)3 solution. The results of X-ray diffraction confirmed that no cadmium was present in solid residuum obtained after the Cd bioleaching as well as Cd leaching using solely ferric iron. The use of H2SO4 solution resulted in the lowest efficiency of Cd leachability, the presence of hydroxides in electrode materials caused neutralization of the leaching solution and inhibition of Cd leaching.  相似文献   

16.
Geochemical, mineralogical and sedimentological analyses were carried out to contrast two different sites (respectively characterized by permanently oxic and anoxic conditions) in a small, meromictic, seawater lake. In fact, due to relatively high organic matter content, and reduced water exchange, the Rogoznica Lake has almost permanent anoxic conditions below the depth of 12 m, where sediment can be considered an anoxic–sulphidic sedimentary environment. Different water column and sediments redox conditions affect the distribution and speciation of major redox-sensitive metals (Fe, Mn, Mo), reduced sulphur species (RSS) and dissolved organic C (DOC). Trace metals, especially those that accumulate in anoxic–sulphidic environments (Fe, Mo) showed a marked enrichment in the solid phase, whereas the low solubility of sulphides leads to low porewater concentrations. The relatively high sedimentary enrichment of Mo (up to 81 mg/kg) also confirms highly anoxic conditions within the Rogoznica Lake sediments. Results clearly show that chemical species within the sediments will tend towards equilibrium between porewater and solid phase according the prevailing environment conditions such as redox, pH, salinity, DOC.  相似文献   

17.
The characteristics of the airborne particulates in the industrial belt of the city of Madrid were studied and their metal content in Pb, Ca, Cu, Ni, Fe, Mn, Cr, Mg, Zn and K were determined, with the purpose of assessing any differences when compared to typical urban particulates. The object was to examine the sources of the trace metals analysed and to evaluate their spatial and temporal variations. Six sample collection points were chosen in the industrial belt of the city of Madrid and more than 320 samples were collected over a period of one year. Various forms of source identification were used in order to study the origins of each of the analysed metals. The data obtained indicates that the area studied has a different kind of pollution from that which typically occurs in urban or industrial areas. We were also able to explain a high percentage of the inorganic pollution investigated using a small number of sources: resuspended ground dust, vehicle exhaust, building, industrial combustion and metal processes, and fuel-oil combustion.  相似文献   

18.
The influence of 10 wt.% mature compost was tested on the heavy metal leachate emissions from a calcium-rich municipal solid waste incineration air pollution control residue (MSWI APC). Apart from elongated columns (500 and 1250 mm), an otherwise norm compliant European percolation test setup was used. More than 99% of the metals Al, As, Cd, Cr, Cu, Fe and Ni were left in the APC residue after leaching to a liquid-to-solid ratio (L/S) of 10. Apparent short-term effects of elevated leachate DOC concentrations on heavy metal releases were not detected. Zn and Pb leachate concentrations were one order of magnitude lower for L/S 5 and 10 from the pure APC residue column, which suggests a possible long-term effect of compost on the release of these elements. Prolonging the contact time between the pore water and the material resulted in elevated leachate concentrations at L/S 0.1 to L/S 1 by a factor of 2. Only Cr and Pb concentrations were at their maxima in the first leachates at L/S 0.1. Equilibrium speciation modelling with the PHREEQC code suggested portlandite (Ca(OH)2) to control Ca solubility and pH.  相似文献   

19.
Leachates from roasted sulfide residues, which are the wastes from the production of sulfuric acid at Falun, Sweden, have low pH and high concentrations of Zn, Fe, and SO4. The minerals are mainly hematite and maghemite and, because the various sulfides in the feed behave differently during the roasting process, the residual sulfides minerals are pyrrhotite and sphalerite. Oxidation of the residual sulfides contributes acidity, Zn, Fe, Cu, Cd, and sulfate to the effluents from the waste deposits. The dissolution of sphalerite is most likely accelerated in acid solution rich in Fe (III). The formation of Pb-sulfate coatings on galena may provides an armoring effect which slows the oxidation of the galena. Residual sulfides are source phases controlling long-term contaminant release. Other source minerals for Zn, Fe, Pb, Cu, Cd and SO4 in the effluents are iron oxides which retained percentage quantities of SO4, roast-derived alteration rims of Zn oxides on sphalerite, alterated silicates formed during the roasting process, and secondary minerals (e.g. Zn, Fe, Cu sulfates, iron hydroxides) that were precipitated by in-site oxidation in the waste dumps. The Zn, Fe, and Cu sulfates most likely control short-term changes in the chemistry of the leachate, while Pb concentration in the leachates may be controlled predominantly by Pb-release from the altered silicates. The mineralogical and geochemical data provide fundamental information essential for the remedial management of this type of industial waste.  相似文献   

20.
This paper presents the study of the combustion of char residues produced during co-gasification of coal with pine with the aim of characterizing them for their potential use for energy. These residues are generally rich in carbon with the presence of other elements, with particular concern for heavy metals and pollutant precursors, depending on the original fuel used.The evaluation of environmental toxicity of the char residues was performed through application of different leaching tests (EN12457-2, US EPA-1311 TCLP and EA NEN 7371:2004). The results showed that the residues present quite low toxicity for some of pollutants. However, depending on the fuel used, possible presence of other pollutants may bring environmental risks.The utilization of these char residues for energy was in this study evaluated, by burning them as a first step pre-treatment prior to landfilling. The thermo-gravimetric analysis and ash fusibility studies revealed an adequate thermochemical behavior, without presenting any major operational risks.Fluidized bed combustion was applied to char residues. Above 700 °C, very high carbon conversion ratios were obtained and it seemed that the thermal oxidation of char residues was easier than that of the coals. It was found that the char tendency for releasing SO2 during its oxidation was lower than for the parent coal, while for NOX emissions, the trend was observed to increase NOX formation. However, for both pollutants the same control techniques might be applied during char combustion, as for coal. Furthermore, the leachability of ashes resulting from the combustion of char residues appeared to be lower than those produced from direct coal combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号