首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
Public elevators are an essential requirement in modern high-rise buildings. However, the confined, crowded interior of an elevator provides an ideal breeding ground for all manners of biological aerosols. Consequently, when using an elevator at a university in Taiwan as the research target, this study performs an experimental investigation into the effectiveness of hand-sprayed gaseous chlorine dioxide as a disinfection agent. The air quality before and after disinfection is evaluated by measuring the bioaerosol concentrations of bacteria and fungi, respectively. The average background levels of bacteria and fungi before disinfection are found to be 635.7?±?469.6 and 1296.8?±?966.6 colony-forming unit (CFU)/m3, respectively. Following disinfection, the bacteria and fungi concentrations reduced by an average of 35 and 25 %, respectively. The multivariate analysis of variance (MANOVA) results showed that the residual bacteria and fungi concentration levels were determined primarily by the number of individuals within the elevator and the elapsed time following disinfection. In general, the present results show that given a maximum of five individuals within the elevator, a disinfection schedule of once every 40 min is sufficient to reduce the bioaerosol concentrations of bacteria and fungi to the levels specified by the Taiwan Environmental Protection Agency (EPA).  相似文献   

2.
The main objective of this work was to quantify and characterize the major indoor air contaminants present in different stages of a municipal WWTP, including microorganisms (bacteria and fungi), carbon dioxide, carbon monoxide, hydrogen sulfide ammonia, formaldehyde, and volatile organic compounds (VOCs). In general, the total bacteria concentration was found to vary from 60 to >52,560 colony-forming units (CFU)/m3, and the total fungi concentration ranged from 369 to 14,068 CFU/m3. Generally, Gram-positive bacteria were observed in higher number than Gram-negative bacteria. CO2 concentration ranged from 251 to 9,710 ppm, and CO concentration was either not detected or presented a level of 1 ppm. H2S concentration ranged from 0.1 to 6.0 ppm. NH3 concentration was <2 ppm in most samples. Formaldehyde was <0.01 ppm at all sampling sites. The total VOC concentration ranged from 36 to 1,724 μg/m3. Among the VOCs, toluene presented the highest concentration. Results point to indoor/outdoor ratios higher than one. In general, the highest levels of airborne contaminants were detected at the primary treatment (SEDIPAC 3D), secondary sedimentation, and sludge dehydration. At most sampling sites, the concentrations of airborne contaminants were below the occupational exposure limits (OELs) for all the campaigns. However, a few contaminants were above OELs in some sampling sites.  相似文献   

3.
The aims of the present study were to determine the levels of bioaerosols including airborne culturable bacteria (total suspended bacteria, Gram-positive bacteria, Staphylococcus, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), and Gram-negative bacteria), fungi, endotoxin, and viruses (influenza A, influenza B, respiratory syncytial virus types A/B, parainfluenza virus types 1/2/3, metapnemovirus, and adenovirus) and their seasonal variations in indoor air of residential apartments. Of the total suspended bacteria cultured in an indoor environment, Staphylococcus was dominant and occupied 49.0 to 61.3 % of indoor air. Among Staphylococcus, S. aureus were detected in 100 % of households' indoor air ranging from 4 to 140 CFU/m3, and 66 % of households were positive for MRSA ranging from 2 to 80 CFU/m3. Staphylococcus and S. aureus concentrations correlated with indoor temperature (adjusted β: 0.4440 and 0.403, p?<?0.0001). Among respiratory viruses, adenovirus was detected in 14 (14 %) samples and influenza A virus was detected in 3 (3 %) samples regarding the indoor air of apartments. Adenovirus concentrations were generally higher in winter (mean concentration was 2,106 copies/m3) than in spring (mean concentration was 173 copies/m3), with concentrations ranging between 12 and 560 copies/m3. Also, a strong negative correlation between adenovirus concentrations and relative humidity in indoor air was observed (r?=??0.808, p?<?0.01). Furthermore, temperature also negatively correlated with adenovirus concentrations (r?=??0.559, p?<?0.05).  相似文献   

4.
This study investigates the impact of wastewater treatment plant (WWTP) effluent on the toxicity of the recipient water body and the effectiveness of the disinfection treatment applied (sodium hypochloride) to assure the compliance of both microbiological and toxicological emission limits. No toxicity was found in the majority of samples collected from the recipient river, upstream and downstream of the WWTP, using three different toxicity tests (Vibrio fischeri, Daphnia magna, and Pseudokirchneriella subcapitata). Only three samples presented toxic unit (TU) values with V. fischeri, and one presented TU with P. subcapitata. The influent toxicity ranged from slightly toxic to toxic (TU = 0.68–4.47) with V. fischeri, while only three samples presented TU values with the other tests. No toxicity was found in the absence of chlorination, while the mean toxicity was 3.42 ± 4.12 TU with chlorination in the effluent. Although no toxicity or very slight toxicity was found in the receiving water, its residual toxicity was higher than the US EPA Quality Standard in two samples. Escherichia coli concentration had a lower mean value in the chlorinated effluent: 13,993 ± 12,037 CFU/100 mL vs. 62,857 ± 80,526 CFU/100 mL for the not chlorinated effluent. This difference was shown to be significant (p < 0.05). E. coli in ten chlorinated samples was higher than the limit established by European and Italian Legislation. The mean highest trihalomethanes (THMs) value was found in the influent samples (2.79 ± 1.40 μg/L), while the mean highest disinfection by-products (DBPs) was found in the effluent samples (1.85 ± 2.25 μg/L). Significant correlations were found between toxicity, sodium hypochlorite, THMs, DBPs, E. coli, and residual chlorine. In conclusion, this study highlighted that the disinfection of wastewater effluents with sodium hypochlorite determines the increase of the toxicity, and sometimes is not enough to control the E. coli contamination.  相似文献   

5.
The purpose of this study was to evaluate the level and composition of bacteria and fungi in the indoor air of an Italian office building equipped with a heating, ventilation and air conditioning (HVAC) system. Airborne bacteria and fungi were collected in three open-space offices during different seasons. The microbial levels in the outdoor air, supply air diffusers, fan coil air flow and air treatment unit humidification water tank were used to evaluate the influence of the HVAC system on indoor air quality (IAQ). A medium–low level of bacterial contamination (50–500 CFU/m3) was found in indoor air. Staphylococcus and Micrococcus were the most commonly found genera, probably due to human presence. A high fungal concentration was measured due to a flood that occurred during the winter. The indoor seasonal distribution of fungal genera was related to the fungal outdoor distribution. Significant seasonal and daily variation in airborne microorganisms was found, underlining a relationship with the frequency of HVAC system switching on/off. The results of this monitoring highlight the role of the HVAC system on IAQ and could be useful to better characterise bacterial and fungal population in the indoor air of office buildings.  相似文献   

6.
In this study, air samples were taken using a BioSampler and gelatin filters from six sites in Beijing: office, hospital, student dormitory, train station, subway, and a commercial street. Dust samples were also collected using a surface sampler from the same environments. Limulus amoebocyte lysate (LAL) and Glucatell assays were used to quantify sample endotoxin and (1,3)- ${\rm{\beta}} $ -d-glucan concentration levels, respectively. Enzyme-linked immunosorbent assay (ELISA) was used to measure the dust mite allergens (Der p 1 and Der f 1). Ultrafine particle and lead concentrations in these sampling sites were also measured using P-Trak and atomic absorption spectrometer, respectively. Analysis of variance (ANOVA) and linear regression analysis were used to analyze the concentration data. Higher culturable bacteria (12,639 CFU/m3) and fungi (1,806 CFU/m3) concentrations were observed for the train station and the subway system, respectively. For the rest of sampling sites, their concentrations were comparable to those found in western countries, ranging from 990 to 2,276 CFU/m3 for bacteria, and from 119 to 269 CFU/m3 for fungi. ANOVA analysis indicated that there were statistically significant differences between the culturable bacterial and fungal concentration levels obtained for different sites (p value = 0.0001 and 0.0047). As for dust allergens, endotoxin, and (1,3)-β -d-glucan, their concentrations also seemed to be comparable to those found in the developed countries. Airborne allergen concentrations ranged from 16 to 68 ng/m3. The dust-borne allergen concentration was observed to range from 0.063 to 0.327 ng/mg. As for endotoxin, the highest airborne concentration of 25.24 ng/m3 was observed for the commercial street, and others ranged from 0.0427 to 0.1259 ng/m3. And dust-borne endotoxin concentration ranged from 58.83 to 6,427.4 ng/mg. For (1,3)-β -d-glucan, the airborne concentration ranged from 0.02 to 1.2 ng/m3. Linear regression analyses showed that there existed poor correlations between those in airborne and dust-borne states (R2?=?0.002~0.43). In our study, the lowest ultrafine particle concentration about 5,203 pt/cm3 was observed in office and the highest was observed at the train station, up to 32,783 pt/cm3. Lead concentration was shown to range from 80 to 170 ng/mg with the highest also observed at the train station. The information provided in this work can be used to learn the general situation of relevant health risks in Beijing. And the results here suggested that when characterizing exposure both airborne and dust-borne as well as the environments should be considered.  相似文献   

7.
This study was designed to evaluate the measuring range and lowest limit of detection of Bacillus endospores in the ambient room air when the Sartorius MD8 sampler, and two different culture methods for bacterial enumeration were used. Different concentrations of bioaerosol were generated inside the test chamber filled with either the high-efficiency particulate air (HEPA)-filtered air or with the ambient room air. The detection of endospores in the HEPA-filtered air was achievable: (1) when they were aerosolized at a concentration above 7.56?×?103 CFU/m3 and analyzed with spread plate method, and (2) when they were aerosolized at a concentration above 4.00?×?102 CFU/m3 and analyzed with pour plate method. The detection of endospores in the ambient room air was possible: (1) when they were aerosolized at a concentration above 9.1?×?103 CFU/m3 and analyzed with spread plate method, and (2) when they were aerosolized at a concentration above 5.6?×?102 CFU/m3 and analyzed with pour plate method. The microorganisms present in the ambient room air interfere with precise quantification of Bacillus endospores when their concentration is relatively low. The results of this study may be helpful in critical assessment of the results obtained from monitoring the air for bacterial endospores.  相似文献   

8.
Bioaerosols are a type of suspended sediments that contribute to poor air quality in Taiwan. Bioaerosols include allergens such as: fungi, bacteria, actinomycetes, arthropods and protozoa, as well as microbial products such as mycotoxins, endotoxins and glucans. When allergens and microbial products are suspended in the air, local air quality will be influenced adversely. In addition, when the particle size is small enough to pass through the respiratory tract entering the human body, the health of the local population is also threatened. Therefore, the purpose of this study is to attempt to understand the concentration and types of bacteria and the bacteria numbers for various particle size ranges during a study period of June 2005 to February 2006 in Taichung City, Central Taiwan. The results indicate that the total average bacterial concentration by using NA medium incubated for 48 h were 8.0 × 102, 1.4 × 103, 2.4 × 103 and 1.3 × 103, 1.9 × 103, 3.5 × 103 cfu/m3 for CMES, TRIPS and RFS sampling sites during the daytime and nighttime period of June 2005 to February 2006. Moreover, the total average bacterial concentration by using R2A medium incubated for 48 h were 8.5 × 102, 1.5 × 103, 2.2 × 103 and 1.2 × 103, 1.7 × 103, 2.5 × 103 cfu/m3 for CMES, TRIPS and RFS sampling sites the daytime and nighttime during the same sampling period. The total average bacteria concentration was the same in either NA or R2A medium for the same sampling times or sites. The total average bacterial concentration was higher in daytime period than that of nighttime period for CMES, TRIPS and RFS sampling sites. The high average bacterial concentration was found in the particle size range of 0.53–0.71 mm (average bioaerosol size was in the range of 2.1–4.7 μm) for each sampling site. Also, 20 kinds of bacteria exceeded levels for each sampling site and were classified as according to shape: rod, coccus and filamentous.  相似文献   

9.
Exposure to microorganisms can cause various diseases or exacerbate the excitatory responses, inflammation, dry cough and shortness of breath, reduced lung function, chronic obstructive pulmonary disease, and allergic response or allergic immune. The aim of the present study was to investigate the density of microorganisms around the air of processing facilities of a biocomposting plant. Each experiment was carried out according to ASTM E884-82 (2001) method. The samples were collected from inhaled air in four locations of the plant, which had a high traffic of workers and employees, including screen, conveyor belt, aerated compost pile, and static compost pile. The sampling was repeated five times for each location selected. The wind speed and its direction were measured using an anemometer. Temperature and humidity were also recorded at the time of sampling. The multistage impactor used for sampling was equipped with a solidified medium (agar) and a pump (with a flow rate of 28.3 l/m) for passing air through the media. It was found that the mean density of total bacteria was >1.7 × 103 cfu/m3 in the study area. Moreover, the mean densities of fungi, intestinal bacteria (Klebsiella), and Staphylococcus aureus were 5.9 × 103, 3.3 × 103, and 4.1 × 103 cfu/m3, respectively. In conclusion, according to the findings, the density of bacteria and fungi per cubic meter of air in the samples collected around the processing facilities of the biocomposting plant in Sanandaj City was higher than the microbial standard for inhaled air.  相似文献   

10.
The concentrations of criteria air pollutants such as CO, NOx (NO + NO2), SO2 and PM were measured in the period of May 2001 and April 2003 in the city of Bursa, Turkey. The average concentrations for this period were 1115±1600 μg/m3, 29±50 μg/m3, 51±24 μg/m3, 79±65 μg/m3, 40±35 μg/m3, 98±220 μg/m3, for CO, NO, NO2, NOx, SO2 and PM, respectively. Temporal changes in concentrations were analyzed using meteorological factors. Correlations among pollutant concentrations and meteorological parameters showed weak relations nearly in all data. Lower concentrations were observed in the summer months while higher concentrations were measured in the winter months. The increase in winter concentrations was probably due to residential heating. Pollutants were associated with each other in order to have information about their origin. NOx/SO2 ratio was also examined to bring out the source origin contributing on air pollution (i.e., traffic or stationary).  相似文献   

11.
The microbiological quality in dental unit waterlines (DUWLs) is considered to be important because patients and dental staff with suppressed immune systems are regularly exposed to water and aerosols generated from dental units (DUs). Opportunistic pathogens like Pseudomonas, Legionella, Candida, and Aspergillus can be present in DUWLs, while during consultations, bioaerosols can be dispersed in the air, thus resulting in effects on microbiological quality of indoor air. This present study represents microbiological air and water quality in dental offices (DOs) and also concerns the relationship between the quality of DO air and dental unit water. This study aimed to assess both the microbial quality of dental unit water and the indoor air in 20 DOs and to survey the effect on the quality of the indoor air with the existing microorganisms in dental unit water. Fourteen out of 20 (70 %) DUWLs were found to be contaminated with a high number of aerobic mesophilic heterotrophic bacteria. In terms of bacterial air contamination levels, in 90 % of DOs, a medium level (<500 colony-forming units (CFU)/m3) of contamination was determined, while in terms of microfungal air contamination, in all DOs, a low level (<100 CFU/m3) of contamination was determined. Potential infection or allergen agents, such as Pseudomonas, Micrococcus, Staphylococcus, Alternaria, Cladosporium, Penicillium, Aspergillus, and Paecilomyces were isolated from water and air samples. This study’s determination of contamination sources and evaluation of microbial load in DOs could contribute to the development of quality control methods in the future.  相似文献   

12.
Airborne lead levels were assessed in nine workshops, three each from battery, electronic repair, and welding sources within the Kumasi Metropolis in Ghana. Samples were collected at 0, 2.5, and 5.0 m away from the emission source at the workshops during working hours and another at 5.0 m during break hours. Airborne lead particulates were collected and analyzed using the filter membrane technique and flame atomic absorption spectrophotometry, respectively. There were significant differences (p ≤ 0.05) among the air lead levels from the workshops. Workshop 3b produced the highest significant values of air lead concentrations of 2,820.31 ± 53.89, 2,406.74 ± 71.87, 754.55 ± 72.52, and 549.01 ± 67.30 μg/m3 at distances of 0, 2.5, 5.0, and 5.0 m (break-time measurement), respectively, while workshop 1w significantly produced the lowest air lead concentration values of 261.06 ± 21.60, 190.92 ± 36.90, 86.43 ± 16.26, and 61.05 ± 3.88 μg/m3 at distances of 0, 2.5, 5.0, and 5.0 m (break-time measurement), respectively. The air lead levels reduced with distance from emission source at the workshops. At all the distances of measurement at working hours, the airborne lead levels were higher than the World Health Organization standard of 50 μg/m3 and exceeded the threshold limit values of 100 to 150 μg/m3 recommended in most jurisdictions. Workers and people in the immediate environs were exposed to air lead levels that were too high by most international standards, thus posing a serious threat to their health.  相似文献   

13.
This on-site survey study was performed to determine the concentrations and emissions of aerial contaminants in the different types of swine houses in Korea and then to present beneficial information available for Korean pig producers to manage optimal air quality in swine house. The swine houses investigated in this research were selected based on three criteria; manure removal system, ventilation mode and growth stage of swine. Mean concentrations of aerial pollutants in swine houses were 8 ppm for ammonia, 300 ppb for hydrogen sulfide, 2 mg m−3 for total dust, 0.6 mg m−3 for respirable dust, 4 log(cfu m−3) for total airborne bacteria and 3 log(cfu m−3) for total airborne fungi, respectively. Mean emissions based on pig (liveweight; 75 kg) and area (m2) were 250 and 340 mg h−1 for ammonia, 40 and 50 mg h−1 for hydrogen sulfide, 40 and 50 mg h−1 for total dust, 10 and 15 mg h−1 for respirable dust, 1.0 and 1.3 log(cfu) h−1 for total airborne bacteria and 0.7 and 1.0 log(cfu) h−1 for total airborne fungi, respectively. In general concentrations and emissions of gases were relatively higher in the swine houses managed with deep-pit manure system with slats and mechanical ventilation mode than the different swine housing types whereas those of particulates and bioaerosol were highest in the naturally ventilated swine houses with deep-litter bed system.  相似文献   

14.
The relationship between indoor and outdoor particulate air pollution was investigated at an urban background site on the Payambar Azam Campus of Mazandaran University of Medical Sciences in Sari, Northern Iran. The concentration of particulate matter sized with a diameter less than 1 μm (PM1.0), 2.5 μm (PM2.5), and 10 μm (PM10) was evaluated at 5 outdoor and 12 indoor locations. Indoor sites included classrooms, corridors, and office sites in four university buildings. Outdoor PM concentrations were characterized at five locations around the university campus. Indoor and outdoor PM measurements (1-min resolution) were conducted in parallel during weekday mornings and afternoons. No difference found between indoor PM10 (50.1 ± 32.1 μg/m3) and outdoor PM10 concentrations (46.5 ± 26.0 μg/m3), indoor PM2.5 (22.6 ± 17.4 μg/m3) and outdoor PM2.5 concentration (22.2 ± 15.4 μg/m3), or indoor PM1.0 (14.5 ± 13.4 μg/m3) and outdoor mean PM1.0 concentrations (14.2 ± 12.3 μg/m3). Despite these similar concentrations, no correlations were found between outdoor and indoor PM levels. The present findings are not only of importance for the potential health effects of particulate air pollution on people who spend their daytime over a period of several hours in closed and confined spaces located at a university campus but also can inform regulatory about the improvement of indoor air quality, especially in developing countries.  相似文献   

15.
16.
This study used manual air sampling method to assess the contribution of road traffic to air pollution level in Dar-es-Salaam City, Tanzania. Samples were collected from 11 different sites. Parameters measured were: sulphur dioxide using pararosaniline method, nitrogen dioxide using saltzman method, particulate matter and particulate lead using filtration method and atomic absorption spectrometric method, respectively. Results showed that hourly average sulphur dioxide concentration range from 127 to 1385 g/m3. The measured values of sulphur dioxide were above the recommended WHO guidelines with an hourly objective value of 350 g/m3 at 87% of the sampling sites. The hourly average nitrogen dioxide concentration ranged from 18 to 53 g/m3. The maximum hourly nitrogen dioxide concentration at 53 g/m3 was below the WHO guideline value of 200 g/m3. The hourly average suspended particulate matter (SPM) ranged from 98 to 1161 g/m3, exceeding the recommended value of 230 g/m3 by WHO at 87% of the sampling sites. The hourly average lead concentration was found to range from 0.60 to 25.6 g/m3, exceeding again the WHO guideline value of 1.5 g/m3at 83% of the sampling sites. Results predicted by Gaussian model when compared with the measured values were found to have a correlation coefficient of 0.8, signifying a good correlation. The risk assessment was undertaken considering the people who spend a significant portion of their time near the roads, such as the Uhuru primary school pupils and the adult population who reside by the roadside. The unit risk realised was 18.2 × 10–6 for adult population and 2.2 × 10–6 for pupils, both scenarios showing risk higher than the United Sates of America Environmental Protection Agency (USEPA) acceptable limit of 1× 10–6. Considering the magnitude of the problem at hand, this study recommends an introduction of mandatory emission tests of SPM, lead and sulphur dioxide (SO2). The study further recommends the introduction of continuous and/or regular air quality monitoring and the use non-leaded petrol in Tanzania.  相似文献   

17.
This study aims to investigate the differences in the concentrations of airborne fungi and pollens between the towns located in the province of Izmir and to determine the factors contributing to these differences. Five stations in each of four towns (Buca, Konak, Bornova, and Karsiyaka) were randomly selected as the research areas. Fungus (cfu/m3) and pollen counts (cm2/pollen count) in the air samples collected from each station between June 2003 and May 2004 were measured. The results revealed that whereas Karsiyaka had the highest fungus concentration (521.33 ± 777.1), Buca and Bornova had the lowest concentration (482.67 ± 308.44). The mean fungus concentration in the province of İzmir was 501.5 ± 486.7. Pollen concentration was the highest in Konak (486.67 ± 839.06) and the lowest in Bornova (369.83 ± 551.13). Fungus and pollen concentrations revealed no difference between the towns (p > 0.05). The relationship between pollen-fungus concentrations and temperature-dust-humidity-sulphurdioxide was investigated but it was found statistically insignificant (p > 0.05). As a result of regression analysis, it was determined that correlation of atmospheric parameters had no effects on pollen and fungus concentrations (p > 0.05).  相似文献   

18.
The present study was undertaken to examine the drinking water quality of Rawal Treatment Plant, Rawalpindi and its distribution network by collecting samples from eight different locations. The aim was to determine potential relationship between the presence of microorganisms and chlorine residual in the distribution network. Quantification of chlorine residual, turbidity, standard plate count (SPC), fecal and total coliforms by Most Probable Number (MPN) was performed. Three different forms of chlorine were measured at each sampling station such as free chlorine, residual chlorine, chloramines and total chlorine residual. A critical evaluation of data presented indicated that pH generally ranged from 7.02–7.30; turbidity varied from 0.34–2.79 NTU; conductivity fluctuated from 359–374 μS/cm; and TDS values were found to be ranging between 180–187 mg/l. Station # 7 was found to be most contaminated. The value of total chlorine was found to be 0.86 to1.7 mg/l at Station # 3 and 6, respectively. Highest standard plate count was 62 CFU/ml at Station # 7. Total coliforms were less than 1.1 MPN/100 ml at almost most of the stations except at Station # 3 where it was found to be greater than 23.0 MPN /100 ml. Overall aim of this study is to create awareness about contamination of drinking water in the water distribution networks and to make recommendations to provincial agencies such as EPA, CDA and WASA that regular monitoring should be carried out to ensure that the chlorine residual is available at consumer end.  相似文献   

19.
This present study assessed the chlorine tolerance of some Citrobacter species recovered from secondary effluents from the clarifiers of two wastewater treatment plants in the Eastern Cape, South Africa. The bacterial survival, chlorine lethal dose and inactivation kinetics at lethal doses were examined. Inactivation of the test bacteria (n = 20) at the recommended dose of 0.5 mg/l for 30 min exposure showed a progressive reduction in bacterial population from 4 to 5 log reduction and residuals ranged between 0.12 and 0.46 mg/l. The bactericidal activity of chlorine increased at higher dosages with a substantial reduction in viability of the bacteria and complete inactivation of the bacterial population at a lethal dose of 0.75 and 1.0 mg/l in 30 min. For the inactivation kinetics, bactericidal activity of chlorine increased with time showing a 3.67–5.4 log reduction in 10 min, 4.0–5.6 log reduction in 20 min and above 6.3 log reductions to complete sterilization of bacterial population over 30 min for all the entire test Citrobacter isolates used in this study. Furthermore, there was a strong correlation (R 2 > 0.84) between bacteria inactivation and increase in contact time. This study appears to have provided support for laboratory evidence of bacterial tolerance to chlorine disinfection at current recommended dose (0.5 mg/l for 30 min), and chlorine concentration between 0.75 and 1.0 mg/l was found to have a better disinfecting capacity to check tolerance of Citrobacter species.  相似文献   

20.
某农药厂周边空气毒死蜱污染状况及健康风险评价   总被引:1,自引:1,他引:0  
为了研究某农药厂毒死蜱生产对周围人群产生的潜在健康风险,在农药厂周围村庄设置采样点,采用大流量大气采样器采集大气样本,索式提取/气相色谱法分析毒死蜱浓度。结果表明,大气气溶胶中毒死蜱的质量浓度为0.2~189 ng/m3,大气颗粒物中毒死蜱浓度较低,质量浓度为ND~3.50 ng/m3。基于美国环保局推荐的健康风险评价方法计算结果表明,大气毒死蜱暴露对于儿童和成人的非致癌风险控制在EPA推荐的可接受风险水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号