首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Co-composting of chicken manure, straw and dry grasses was investigated in a forced aeration system to estimate the effect of aeration rates on NH3, CH4 and N2O emissions and compost quality. Continuous measurements of gas emissions were carried out and detailed gas emission patterns were obtained using an intermittent-aeration of 30 min on/30 min off at rates of 0.01 (A1), 0.1 (A2) and 0.2 (A3) m3 min−1 m−3. Concentrations of CH4 and N2O at the low aeration rate (A1) were significantly greater than those at the other two rates, but there was no significant difference between the A2 and A3 treatments. CH4 and N2O emissions for this mixture could be controlled when the composting process was aerobic and ammonia emissions were reduced at a lower aeration rate. Comparison of CH4, N2O, NH3 emissions and compost quality showed that the aeration rate of the A2 treatment was superior to the other two aeration rates.  相似文献   

2.
This work presents the use of two composts as filter media for the treatment by biofiltration of odors emitted during the aerobic composting of a mixture containing sewage sludge and yard waste. The chemical analysis of the waste gas showed that the malodorous compounds at trace level were the reduced sulfur compounds (RSCs) which were dimethyl sulfide (Me2S), methanethiol (MeSH) and hydrogen sulfide (H2S). Laboratory tests for biofiltration treatment of RSCs were performed in order to compare the properties of two filter media, consisted of a mature compost with yard waste (YW) and a mixture of mature compost with sewage sludge and yard waste (SS/YW). The maximum elimination capacity (EC) values obtained with the YW mature compost as packing material were 12.5 mg m?3 h?1 for H2S, 7.9 mg m?3 h?1 for MeSH and 34 mg m?3 h?1 for Me2S, and the removal efficiency decreased in the order of: H2S > MeSH > Me2S. Moreover, the YW compost filter medium had a better behavior than the filter medium based on SS/YW in terms of acclimation of the microbial communities and moisture content. According to these results, a YW mature compost as packing material for an industrial biofilter were designed and this industrial biofilter was found effective under specified conditions (without inoculation and addition of water). The results showed that the maximum EC value of RSCs was 935 mg m?3 h?1 (100% removal efficiency, RE) for an inlet loads (IL) between 0 and 1000 mg m?3 h?1. Thus, YW compost medium was proven efficient for biofiltration of RSCs both at laboratory and industrial scale.  相似文献   

3.
A double tracer technique was used successfully to quantify whole-site methane (CH4) emissions from Fakse Landfill. Emissions from different sections of the landfill were quantified by using two different tracers. A scaled-down version of the tracer technique measuring close-by to localized sources having limited areal extent was also used to quantify emissions from on-site sources at the landfill facility, including a composting area and a sewage sludge storage pit. Three field campaigns were performed. At all three field campaigns an overall leak search showed that the CH4 emissions from the old landfill section were localized to the leachate collection wells and slope areas. The average CH4 emissions from the old landfill section were quantified to be 32.6 ± 7.4 kg CH4 h−1, whereas the source at the new section was quantified to be 10.3 ± 5.3 kg CH4 h−1. The CH4 emission from the compost area was 0.5 ± 0.25 kg CH4 h−1, whereas the carbon dioxide (CO2) and nitrous oxide (N2O) flux was quantified to be in the order of 332 ± 166 kg CO2 h−1 and 0.06 ± 0.03 kg N2O h−1, respectively. The sludge pit located west of the compost material was quantified to have an emission of 2.4 ± 0.63 kg h−1 CH4, and 0.03 ± 0.01 kg h−1 N2O.  相似文献   

4.
The capacity of laboratory-scale aerated biofilters to oxidize methane was investigated. Four types of organic and mineral-organic materials were flushed with a mixture of CH4, CO2 and air (1:1:8 by volume) during a six-month period. The filter bed materials were as follows: (1) municipal waste compost, (2) an organic horticultural substrate, (3) a composite of expanded perlite and compost amended with zeolite, and (4) the same mixture of perlite and compost amended with bentonite. Methanotrophic capacity during the six months of the experiment reached maximum values of between 889 and 1036 g m−2 d−1. Batch incubation tests were carried out in order to determine the influence of methane and oxygen concentrations, as well as the addition of sewage sludge, on methanotrophic activity. Michaelis constants KM for CH4 and O2 were 4.6-14.9%, and 0.7-12.3%, respectively. Maximum methanotrophic activities Vmax were between 1.3 and 11.6 cm3 g−1 d−1. The activity significantly increased when sewage sludge was added. The main conclusion is that the type of filter bed material (differing significantly in organic matter content, water-holding capacity, or gas diffusion coefficient) was not an important factor in determining methanotrophic capacity when oxygen was supplied to the biofilter.  相似文献   

5.
The wet air oxidation (WAO) of municipal landfill leachate catalyzed by cupric ions and promoted by hydrogen peroxide was investigated. The effect of operating conditions such as WAO treatment time (15-30 min), temperature (160-200 °C), Cu2+ concentration (250-750 mg L−1) and H2O2 concentration (0-1500 mg L−1) on chemical oxygen demand (COD) removal was investigated by factorial design considering a two-stage, sequential process comprising the heating-up of the reactor and the actual WAO. The leachate, at an initial COD of 4920 mg L−1, was acidified to pH 3 leading to 31% COD decrease presumably due to the coagulation/precipitation of colloidal and other organic matter. During the 45 min long heating-up period of the WAO reactor under an inert atmosphere, COD removal values up to 35% (based on the initial COD value) were recorded as a result of the catalytic decomposition of H2O2 to reactive hydroxyl radicals. WAO at 2.5 MPa oxygen partial pressure advanced treatment further; for example, 22 min of oxidation at 200 °C, 250 mg L−1 Cu2+ and 0-1500 mg L−1 H2O2 resulted in an overall (i.e. including acidification and heating-up) COD reduction of 78%. Amongst the operating variables in question, temperature had the strongest influence on both the heating-up and WAO stages, while H2O2 concentration strongly affected the former and reaction time the latter. Nonetheless, the effects of temperature and H2O2 concentration were found to depend on the concentration levels of catalyst as suggested by the significance of their 3rd order interaction term.  相似文献   

6.
A low-cost alternative approach to reduce landfill gas (LFG) emissions is to integrate compost into the landfill cover design in order to establish a biocover that is optimized for biological oxidation of methane (CH4). A laboratory and field investigation was performed to quantify respiration in an experimental compost biocover in terms of oxygen (O2) consumption and carbon dioxide (CO2) production and emission rates. O2 consumption and CO2 production rates were measured in batch and column experiments containing compost sampled from a landfill biowindow at Fakse landfill in Denmark. Column gas concentration profiles were compared to field measurements. Column studies simulating compost respiration in the biowindow showed average CO2 production and O2 consumption rates of 107 ± 14 g m−2 d−1 and 63 ± 12 g m−2 d−1, respectively. Gas profiles from the columns showed elevated CO2 concentrations throughout the compost layer, and CO2 concentrations exceeded 20% at a depth of 40 cm below the surface of the biowindow. Overall, the results showed that respiration of compost material placed in biowindows might generate significant CO2 emissions. In landfill compost covers, methanotrophs carrying out CH4 oxidation will compete for O2 with other aerobic microorganisms. If the compost is not mature, a significant portion of the O2 diffusing into the compost layer will be consumed by non-methanotrophs, thereby limiting CH4 oxidation. The results of this study however also suggest that the consumption of O2 in the compost due to aerobic respiration might increase over time as a result of the accumulation of biomass in the compost after prolonged exposure to CH4.  相似文献   

7.
The natural methane oxidation potential of methanotrophic bacteria in landfill top covers is a sustainable and inexpensive method to reduce methane emissions to the atmosphere. Basically, the activity of methanotrophic bacteria is limited by the availability of oxygen in the soil. A column study was carried out to determine whether and to what extent vegetation can improve soil aeration and maintain the methane oxidation process. Tested soils were clayey silt and mature compost. The first soil is critical in light of surface crusting due to vertical erosion of an integral part of fine-grained material, blocking pores required for the gas exchange. The second soil, mature compost, is known for its good methane oxidation characteristics, due to high air-filled porosity, favorable water retention capacity and high nutrient supply. The assortment of plants consisted of a grass mixture, Canadian goldenrod and a mixture of leguminous plants. The compost offered an excellent methane oxidation potential of 100% up to a CH4-input of 5.6 l CH4 m−2 h−1. Whereas the oxidation potential was strongly diminished in the bare control column filled with clayey silt even at low CH4-loads. By contrast the planted clayey silt showed an increased methane oxidation potential compared to the bare column. The spreading root system forms secondary macro-pores, and hence amplifies the air diffusivity and sustain the oxygen supply to the methanotrophic bacteria. Water is produced during methane oxidation, causing leachate. Vegetation reduces the leachate by evapotranspiration. Furthermore, leguminous plants support the enrichment of soil with nitrogen compounds and thus improving the methane oxidation process. In conclusion, vegetation is relevant for the increase of oxygen diffusion into the soil and subsequently enhances effective methane oxidation in landfill cover soils.  相似文献   

8.
This paper focused on the factors affecting the respiration rate of the digestate taken from a continuous anaerobic two-stage process treating the organic fraction of municipal solid waste (OFMSW). The process involved a hydrolytic reactor (HR) that produced a leachate fed to a submerged anaerobic membrane bioreactor (SAMBR). It was found that a volatile solids (VS) removal in the range 40-75% and an operating temperature in the HR between 21 and 35 °C resulted in digestates with similar respiration rates, with all digestates requiring 17 days of aeration before satisfying the British Standard Institution stability threshold of 16 mg CO2 g VS−1 day−1. Sanitization of the digestate at 65 °C for 7 days allowed a mature digestate to be obtained. At 4 g VS L−1 d−1 and Solid Retention Times (SRT) greater than 70 days, all the digestates emitted CO2 at a rate lower than 25 mg CO2 g VS−1 d−1 after 3 days of aeration, while at SRT lower than 20 days all the digestates displayed a respiration rate greater than 25 mg CO2 g VS−1 d−1. The compliance criteria for Class I digestate set by the European Commission (EC) and British Standard Institution (BSI) could not be met because of nickel and chromium contamination, which was probably due to attrition of the stainless steel stirrer in the HR.  相似文献   

9.
A wide variety of antibiotics have been detected in natural water samples and this is of potential concern because of the adverse environmental effects of such antibiotic residues. One of the main sources of antibiotics effluence to the surrounding environment is livestock manures which often contain elevated concentrations of veterinary antibiotics (VAs) which survive digestion in the animal stomach following application in animal husbandry practices. In Korea, livestock manures are normally used for compost production indicating that there is potential for antibiotic release to the environment through compost application to agricultural lands. Therefore, reduction of the amount of VAs in composts is crucial. The purpose of this study was to understand the influence of the composting process and the components of the compost on the levels of three common classes of antibiotics (tetracyclines, sulfonamides, and macrolides). Composted materials at different stages of composting were collected from compost manufacturing plants and the variation in antibiotic concentrations was determined. Three different antibiotics, chlortetracycline (CTC), sulfamethazine (SMZ), and tylosin (TYL) at three different concentrations (2, 10, and 20 mg kg−1) were also applied to a mixture of pig manure and sawdust and the mixtures incubated using a laboratory scale composting apparatus to monitor the changes in antibiotic concentrations during composting together with the physicochemical properties of the composts. During composting, in both field and lab-scale investigations, the concentrations of all three different antibiotics declined below the relevant Korean guideline values (0.8 mg kg−1 for tetracyclines, 0.2 mg kg−1 for sulfonamides and 1.0 mg kg−1 for macrolides). The decline of tetracycline and sulfonamide concentrations was highly dependent on the presence of sawdust while there was no influence of sawdust on TYL decline.  相似文献   

10.
The amounts of harmful gas emissions from the process of composting swine waste were determined using an experimental composting apparatus. Forced aeration (19.2–96.1 l/m3/min) was carried out continuously, and exhaust gases were collected and analyzed periodically. With weekly turning and the addition of a bulking agent in order to decrease the moisture content and increase air permeability, the temperature of most of the contents rose to 70°C and composting was complete within 3–5 weeks. NH3, CH4, and N2O emissions were high in the early stage of composting. About 10%–25% of the nitrogen in the raw material was lost as NH3 gas during composting. The emission rate of NH3 mainly depended on the aeration rate, so that as the aeration rate rose, the level of NH3 emissions increased. The CH4 and N2O emissions could be kept lower with adequate treatment at more than 40 l/m3/min aeration. N2O may be mainly the result of the denitrification of NO x -N in the additional matured compost used as a composting accelerator. Received: September 11, 1998 / Accepted: November 8, 1999  相似文献   

11.
Granule sequencing batch reactors (GSBR) were established for landfill leachate treatment, and the COD removal was analyzed kinetically using a modified model. Results showed that COD removal rate decreased as influent ammonium concentration increasing. Characteristics of nitrogen removal at different influent ammonium levels were also studied. When the ammonium concentration in the landfill leachate was 366 mg L−1, the dominant nitrogen removal process in the GSBR was simultaneous nitrification and denitrification (SND). Under the ammonium concentration of 788 mg L−1, nitrite accumulation occurred and the accumulated nitrite was reduced to nitrogen gas by the shortcut denitrification process. When the influent ammonium increased to a higher level of 1105 mg L−1, accumulation of nitrite and nitrate lasted in the whole cycle, and the removal efficiencies of total nitrogen and ammonium decreased to only 35.0% and 39.3%, respectively. Results also showed that DO was a useful process controlling parameter for the organics and nitrogen removal at low ammonium input.  相似文献   

12.
The effluence of veterinary antibiotics (VAs) to aquatic and terrestrial environments is of concern due to the potential adverse effects on human health, such as the production of antibiotic resistant bacteria. One of the main pathways for antibiotics to enter the environment is via the application of manure and/or manure-based composts as an alternative organic fertilizer to agricultural lands. While a wide diversity of manure-based composts are produced in Korea, there is currently no regulatory guideline for VA residues. Hence, monitoring and limiting the concentration of VA residues in manure and/or manure-based composts prior to application to the lands is important to mitigate any environmental burden. The current study was conducted to examine the applicability of the Charm II antibiotic test system for monitoring tetracyclines, sulfonamides and macrolides in manure-based composts. The Charm II system was a highly reproducible method for determining whether VA residue concentrations in manure-based compost exceeded specific guideline values. A wide range of manure-based composts and liquid fertilizers commercially available in Korea were examined using the Charm II system to monitor the residues of the target VAs. For this, the guideline concentrations of VA residues (0.8 mg kg−1 for tetracyclines, 0.2 mg kg−1 for sulfonamides, and 0.1 mg kg−1 for macrolides) stated in ‘Official Standard of Feeds’ under the ‘Control of Livestock and Fish Feed Act’ in Korea were adopted to establish control points. Of the 70 compost samples examined 12 exceeded 0.8 mg kg−1 for tetracyclines and 21 exceeded 0.2 mg kg−1 for sulfonamides. Of the 25 liquid fertilizer samples examined most samples exceeded these prospective guidelines.  相似文献   

13.
In order to devise design criteria for biocovers intended to enhance the microbial oxidation of landfill methane it is critical to understand the factors influencing gas migration and methane oxidation in landfill cover soils. On an old municipal solid waste landfill in north-western Germany soil gas concentrations (10, 40, 90 cm depth), topsoil methane oxidation capacity and soil properties were surveyed at 40 locations along a 16 m grid. As soil properties determine gas flow patterns it was hypothesized that the variability in soil gas composition and the subsequent methanotrophic activity would correspond to the variability of soil properties. Methanotrophic activity was found to be subject to high spatial variability, with values ranging between 0.17 and 9.80 g CH4 m−2 h−1. Considering the current gas production rate of 0.03 g CH4 m−2 h−1, the oxidation capacity at all sampled locations clearly exceeded the flux to the cover, and can be regarded as an effective instrument for mitigating methane fluxes. The methane concentration in the cover showed a high spatial heterogeneity with values between 0.01 and 0.32 vol.% (10 cm depth), 22.52 vol.% (40 cm), and 36.85 vol.% (90 cm). The exposure to methane raised the oxidation capacity, suggested by a statistical correlation to an increase in methane concentration at 90 cm depth. Methane oxidation capacity was further affected by the methanotroph bacteria pH optimum and nutrient availability, and increased with decreasing pH towards neutrality, and increased with soluble ion concentration). Soil methane and carbon dioxide concentration increased with lower flow resistance of the cover, as represented by the soil properties of a reduced bulk density, increase in air capacity and in relative ground level.  相似文献   

14.
Availability and properties of materials for the Fakse Landfill biocover   总被引:1,自引:0,他引:1  
Methane produced in landfills can be oxidized in landfill covers made of compost; often called biocovers. Compost materials originating from seven different sources were characterized to determine their methane-oxidizing capacity and suitability for use in a full-scale biocover at Fakse Landfill in Denmark. Methane oxidation rates were determined in batch incubations. Based on material availability, characteristics, and the results of batch incubations, five of the seven materials were selected for further testing in column incubations. Three of the best performing materials showed comparable average methane oxidation rates: screened garden waste compost, sewage sludge compost, and an unscreened 4-year old garden waste compost (120, 112, and 108 g m−2 d−1, respectively). On the basis of these results, material availability and cost, the unscreened garden waste compost was determined to be the optimal material for the biocover. Comparing the results to criteria given in the literature it was found that the C/N ratio was the best indicator of the methane oxidation capacity of compost materials. The results of this work indicate that batch incubations measuring methane oxidation rates offer a low-cost and effective method for comparing compost sources for suitability of use in landfill biocovers.  相似文献   

15.
The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm−3, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH4 m−2 d−1, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH4 m−2 d−1 and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.  相似文献   

16.
Landfill leachate contains a high concentration of ammoniacal substances which can be a potential supply of N for plants. A bioassay was conducted using seeds of Brassica chinensis and Lolium perenne to evaluate the phytotoxicity of the leachate sample. A soil column experiment was then carried out in a greenhouse to study the effect of leachate on plant growth. Two grasses (Paspalum notatum and Vetiver zizanioides) and two trees (Hibiscus tiliaceus and Litsea glutinosa) were irrigated with leachate at the EC50 levels for 12 weeks. Their growth performance and the distribution of N were examined and compared with columns applied with chemical fertilizer. With the exception of P. notatum, plants receiving leachate and fertilizer grew better than those receiving water alone. The growth of L. glutinosa and V. zizanioides with leachate irrigation did not differ significantly from plants treated with fertilizer. Leachate irrigation significantly increased the levels of NHx-N in soil. Although NOx-N was below 1 mg N L−1 in the leachate sample, the soil NOx-N content increased by 9-fold after leachate irrigation, possibly as a result of nitrification. Leachate irrigation at EC50 provided an N input of 1920 kg N ha−1 over the experimental period, during which up to 1050 kg N ha−1 was retained in the soil and biomass, depending on the type of vegetation. The amount of nutrient added seems to exceed beyond the assimilative capability. Practitioners should be aware of the possible consequence of N saturation when deciding the application rate if leachate irrigation is aimed for water reuse.  相似文献   

17.
The liquid-to-solid ratio (L/S) of semi-solid Fenton process (SSFP) designated for hazardous solid waste detoxication was investigated. The removal and minimization effects of o-nitroaniline (ONA) in simulate solid waste residue (SSWR) from organic arsenic industry was evaluated by total organic carbon (TOC) and ONA removal efficiency, respectively. Initially, Box-Behnken design (BBD) and response surface methodology (RSM) were used to optimize the key factors of SSFP. Results showed that the removal rates of TOC and ONA decreased as L/S increased. Subsequently, four target initial ONA concentrations including 100 mg kg−1, 1 g kg−1, 10 g kg−1, and 100 g kg−1 on a dry basis were evaluated for the effect of L/S. A significant cubic empirical model between the initial ONA concentration and L/S was successfully developed to predict the optimal L/S for given initial ONA concentration for SSFP. Moreover, an optimized operation strategy of multi-SSFP for different cases was determined based on the residual target pollutant concentration and the corresponding environmental conditions. It showed that the total L/S of multi-SSFP in all tested scenarios was no greater than 3.8, which is lower than the conventional slurry systems (L/S ? 5). The multi-SSFP is environment-friendly when it used for detoxication of hazardous solid waste contaminated by ONA and provides a potential method for the detoxication of hazardous solid waste contaminated by organics.  相似文献   

18.
For urban community composting centers, the proper selection and use of bulking agent is a key element in not only the cost but also the quality of the finished compost. Besides wood chips (WC) widely used as BA, readily usable cereal residue pellets (CRP) can provide biodegradable carbon and sufficient free air space (FAS) to produce stabilizing temperatures. The objective of the present project was to test at a community center, the effectiveness of CRP in composting food waste (FW). Two recipes were used (CRP with and without WC) to measure: FAS; temperature regimes, and; losses in mass, water, carbon and nitrogen. Both recipes were composted during three consecutive years using a 2 m3 commercial in-vessel composter operated in downtown Montreal (Canada). For all recipes, FAS exceeded 30% for moisture content below 60%, despite yearly variations in FW and BA physical properties. When properly managed by the center operator, both FW and CRP compost mixtures with and without WC developed within 3 days thermophilic temperatures exceeding 50 °C. The loss of total mass, water, carbon and nitrogen was quite variable for both recipes, ranging from 36% to 54%, 42% to 55%, 48% to 65%, and 4% to 55%, respectively. The highest loss in dry mass, water and C was obtained with FW and CRP without WC aerated to maintain mesophilic rather than thermophilic conditions. Although variable, lower nitrogen losses were obtained with CRP and WC as BA, compared to CRP alone, as also observed during previous laboratory trials. Therefore and as BA, CRP can be used alone but nitrogen losses will be minimized by adding WC. Compost stabilization depends on operator vigilance in terms of aeration. The measured fresh compost density of 530-600 kg/m3 indicates that the 2 m3 in-vessel composter can treat 6.5 tons of FW/year if operated during 7 months.  相似文献   

19.
Emissions of volatile organic compounds (VOCs) from the compost maturation building in a municipal solid waste treatment facility were inventoried by solid phase microextraction and gas chromatography–mass spectrometry. A large diversity of chemical classes and compounds were found. The highest concentrations were found for n-butanol, methyl ethyl ketone and limonene (ppmv level). Also, a range of compounds exceeded their odor threshold evidencing that treatment was needed. Performance of a chemical scrubber followed by two parallel biofilters packed with an advanced packing material and treating an average airflow of 99,300 m3 h?1 was assessed in the treatment of the VOCs inventoried. Performance of the odor abatement system was evaluated in terms of removal efficiency by comparing inlet and outlet abundances. Outlet concentrations of selected VOCs permitted to identify critical odorants emitted to the atmosphere. In particular, limonene was found as the most critical VOC in the present study. Only six compounds from the odorant group were removed with efficiencies higher than 90%. Low removal efficiencies were found for most of the compounds present in the emission showing a significant relation with their chemical properties (functionality and solubility) and operational parameters (temperature, pH and inlet concentration). Interestingly, benzaldehyde and benzyl alcohol were found to be produced in the treatment system.  相似文献   

20.
Landfill aeration by means of low pressure air injection is a promising tool to reduce long term emissions from organic waste fractions through accelerated biological stabilization. Top covers that enhance methane oxidation could provide a simple and economic way to mitigate residual greenhouse gas emissions from in situ aerated landfills, and may replace off-gas extraction and treatment, particularly at smaller and older sites. In this respect the installation of a landfill cover system adjusted to the forced-aerated landfill body is of great significance. Investigations into large scale lysimeters (2 × 2 × 3 m) under field conditions have been carried out using different top covers including compost materials and natural soils as a surrogate to gas extraction during active low pressure aeration. In the present study, the emission behaviour as well as the water balance performance of the lysimeters has been investigated, both prior to and during the first months of in situ aeration. Results reveal that mature sewage sludge compost (SSC) placed in one lysimeter exhibits in principle optimal ambient conditions for methanotrophic bacteria to enhance methane oxidation. Under laboratory conditions the mature compost mitigated CH4 loadings up to 300 l CH4/m2 d. In addition, the compost material provided high air permeability even at 100% water holding capacity (WHC). In contrast, the more cohesive, mineral soil cover was expected to cause a notably uniform distribution of the injected air within the waste layer. Laboratory results also revealed sufficient air permeability of the soil materials (TS-F and SS-Z) placed in lysimeter C. However, at higher compaction density SS-Z became impermeable at 100% WHC.Methane emissions from the reference lysimeter with the smaller substrate cover (12–52 g CH4/m2 d) were significantly higher than fluxes from the other lysimeters (0–19 g CH4/m2 d) during in situ aeration. Regarding water balance, lysimeters covered with compost and compost-sand mixture, showed the lowest leachate rate (18–26% of the precipitation) due to the high water holding capacity and more favourable plant growth conditions compared to the lysimeters with mineral, more cohesive, soil covers (27–45% of the precipitation).On the basis of these results, the authors suggest a layered top cover system using both compost material as well as mineral soil in order to support active low-pressure aeration. Conventional soil materials with lower permeability may be used on top of the landfill body for a more uniform aeration of the waste due to an increased resistance to vertical gas flow. A compost cover may be built on top of the soil cover underlain by a gas distribution layer to improve methane oxidation rates and minimise water infiltration. By planting vegetation with a high transpiration rate, the leachate amount emanating from the landfill could be further minimised. The suggested design may be particularly suitable in combination with intermittent in situ aeration, in the later stage of an aeration measure, or at very small sites and shallow deposits. The top cover system could further regulate water infiltration into the landfill and mitigate residual CH4 emissions, even beyond the time of active aeration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号