共查询到20条相似文献,搜索用时 15 毫秒
1.
KENICHI OZAKI† MASAHIRO ISONO† TAKAYUKI KAWAHARA† SHIGEO IIDA† TAKUMA KUDO† KENJI FUKUYAMA† 《Conservation biology》2006,20(5):1507-1515
Abstract: Although species with large area requirements are sometimes used as umbrella species, their general utility as conservation tools is uncertain. We surveyed the species diversity of birds, butterflies, carabids, and forest-floor plants in forest sites across an area (1600 km2 ) in which we delineated large breeding home ranges of Northern Goshawk ( Accipiter gentilis ). We tested whether protection of the home ranges could serve as an effective umbrella to protect sympatric species of the four taxa. We also used an empirical habitat model of occupancy of home range to examine mechanisms by which the Northern Goshawk acts as an umbrella species. Among species richness, abundance, and species composition of the four taxa, only abundance and species composition of birds differed between sites located inside and outside home ranges, which was due to greater abundance of bird species that were prey of Northern Goshawks inside the home ranges. Thus, although home range indicated areas with high abundance of certain bird prey species, it was not effective as an indicator of the species diversity of all four taxa. We also did not find any difference in species richness, abundance, and species composition between sites predicted as occupied and unoccupied using the habitat model. In contrast, when we selected sites on the basis of each habitat variable in the model, habitat variables that selected sites either in agricultural or forested landscapes encompassed sites with high species richness or particular species composition. This result suggests that the low performance of the Northern Goshawk as an umbrella species is due to this species' preference for habitat in both agricultural and forested landscapes. Species that can adjust to changes in habitat conditions may not act as effective umbrella species despite having large home ranges. 相似文献
2.
Focal Species: A Multi-Species Umbrella for Nature Conservation 总被引:31,自引:0,他引:31
Robert J. Lambeck 《Conservation biology》1997,11(4):849-856
To prevent the further loss of species from landscapes used for productive enterprises such as agriculture, forestry, and grazing, it is necessary to determine the composition, quantity, and configuration of landscape elements required to meet the needs of the species present. I present a multi-species approach for defining the attributes required to meet the needs of the biota in a landscape and the management regimes that should be applied. The approach builds on the concept of umbrella species, whose requirements are believed to encapsulate the needs of other species. It identifies a suite of "focal species," each of which is used to define different spatial and compositional attributes that must be present in a landscape and their appropriate management regimes. All species considered at risk are grouped according to the processes that threaten their persistence. These threats may include habitat loss, habitat fragmentation, weed invasion, and fire. Within each group, the species most sensitive to the threat is used to define the minimum acceptable level at which that threat can occur. For example, the area requirements of the species most limited by the availability of particular habitats will define the minimum suitable area of those habitat types; the requirements of the most dispersal-limited species will define the attributes of connecting vegetation; species reliant on critical resources will define essential compositional attributes; and species whose populations are limited by processes such as fire, predation, or weed invasion will define the levels at which these processes must be managed. For each relevant landscape parameter, the species with the most demanding requirements for that parameter is used to define its minimum acceptable value. Because the most demanding species are selected, a landscape designed and managed to meet their needs will encompass the requirements of all other species. 相似文献
3.
Ecological Sustainability as a Conservation Concept 总被引:3,自引:0,他引:3
Neither the classic resource management concept of maximum sustainable yield nor the concept of sustainable development are useful to contemporary, nonanthropocentric, ecologically informed conservation biology. As an alternative, we advance an ecological definition of sustainability that is in better accord with biological conservation: meeting human needs without compromising the health of ecosystems. In addition to familiar benefit-cost constraints on human economic activity, we urge adding ecologic constraints. Projects are not choice-worthy if they compromise the health of the ecosystems in which human economic systems are embedded. Sustainability, so defined, is proffered as an approach to conservation that would complement wildlands preservation for ecological integrity, not substitute for wildlands preservation. 相似文献
4.
Feminizing Turtle Embryos as a Conservation Tool 总被引:1,自引:0,他引:1
5.
6.
7.
8.
9.
Trophy hunting can provide economic incentives to conserve wild species, but it can also involve risk when rare species are hunted. The anthropogenic Allee effect (AAE) is a conceptual model that seeks to explain how rarity may spread the seeds of further endangerment. The AAE model has increasingly been invoked in the context of trophy hunting, increasing concerns that such hunting may undermine rather than enhance conservation efforts. We question the appropriateness of uncritically applying the AAE model to trophy hunting for 4 reasons. First, the AAE assumes an open‐access resource, which is a poor characterization of most trophy‐hunting programs and obscures the potential for state, communal, or private‐property use rights to generate positive incentives for conservation. Second, study results that show the price of hunting increases as the rarity of the animal increases are insufficient to indicate the presence of AAE. Third, AAE ignores the existence of biological and behavioral factors operating in most trophy‐hunting contexts that tend to regulate the effect of hunting. We argue that site‐specific data, rather than aggregated hunting statistics, are required to demonstrate that patterns of unsustainable exploitation can be well explained by an AAE model. Instead, we suggest that conservation managers seeking to investigate and identify constraints that limit the potential conservation role of trophy hunting, should focus on the critical governance characteristics that shape the potential conservation role of trophy hunting, such as corruption, insecure property rights, and inadequate sharing of benefits with local people. Aplicación del Modelo Antropogénico del Efecto Allee sobre la Caza de Trofeos como una Herramienta de Conservación 相似文献
10.
Population Constraints Associated with the Use of Black Rhinos as an Umbrella Species for Desert Herbivores 总被引:3,自引:0,他引:3
Joel Berger 《Conservation biology》1997,11(1):69-78
The numerous tactics used to conserve biodiversity include the designation of protected areas, political change, and research and education, the latter involving paradigms such as insular biogeography and the "umbrella species concept." In Namibia lands removed from national park status in 1970 and currently under the jurisdiction of indigenous people now contain one of the few unfenced populations of black rhinos (Diceros bicornis) remaining in Africa. Theory predicts that the protection of umbrella species will ensure the survival of other biota that require(s) less space. To gauge how well biodiversity might be retained by examining the spatial needs of a small population of black rhinos, I used data gathered under various ecological conditions to estimate mean and minimum population sizes of six large herbivores of the Namib Desert ranging in size from giraffe (Giraffa camelopardalis) to springbok (Antidorcas marsupialis) and ostrich (Struthio camelus). My results indicate that annual differences in rainfall, both within and between seasons, resulted in wide fluctuations in herbivore population sizes for all species except rhino. Although other herbivores switched to areas of higher rainfall, rhinos did not. The data suggest that under conditions of extreme environmental variance the space used by rhinos alone was unlikely to assure the existence of populations of other species in excess of 250 individuals. Fifty percent of the species failed to exceed 150 individuals 50% of the time and one third of the species never attained populations in excess of 50 individuals. However, by employing assumptions about the spatial needs of rhino populations numbering up to 100 individuals, the mean minimum population sizes attained by any of four desert herbivores is 535. A future challenge in using rhinos and other large-bodied species as umbrellas for organisms of either similar or dissimilar trophic levels will be the refinement of estimates of population viability. 相似文献
11.
12.
13.
DAVID EHRENFELD 《Conservation biology》2006,20(3):723-732
Abstract: It has been suggested that transgenics and vertebrate cloning have a role to play in conservation. Now is the time to evaluate their risks and benefits, before these technologies are widely implemented in our field. Direct risks of transgenics include escape and introgression of transgenes into wild populations; weedy invasion by transgenic organisms; toxicity or pathogenicity of engineered organisms and their products; and human error in the field testing and tracking of transgenic organisms. Indirect risks include environmental effects of increased herbicide use; the danger that engineered organisms may aid the development of bioweapons; the likelihood that gene patenting will lead to the privatization of natural resources; and the diversion of support from less glamorous forms of conservation. Formal risk assessments are commonly used to evaluate transgenic procedures, but our incomplete understanding of both ecosystem processes and the action of transgenes renders most of these assessments scientifically and socially unjustified. Nevertheless, a few, low-risk applications of transgenics may be possible: for example, "super-sterile" ornamental cultivars. Vertebrate cloning poses little risk to the environment, but it can consume scarce conservation resources, and its chances of success in preserving species seem poor. To date, the conservation benefits of transgenics and vertebrate cloning remain entirely theoretical, but many of the risks are known and documented. Conservation biologists should devote their research and energies to the established methods of conservation, none of which require transgenics or vertebrate cloning. 相似文献
14.
15.
Abstract: Analysis of geographic concentrations of endemic taxa is often used to determine priorities for conservation action; nevertheless, assumptions inherent in the taxonomic authority list used as the basis for analysis are not always considered. We analyzed foci of avian endemism in Mexico under two alternate species concepts. Under the biological species concept, 101 bird species are endemic to Mexico and are concentrated in the mountains of the western and southern portions of the country. Under the phylogenetic species concept, however, total endemic species rises to 249, which are concentrated in the mountains and lowlands of western Mexico. Twenty-four narrow endemic biological species are concentrated on offshore islands, but 97 narrow endemic phylogenetic species show a concentration in the Transvolcanic Belt of the mainland and on several offshore islands. Our study demonstrates that conservation priorities based on concentrations of endemic taxa depend critically on the particular taxonomic authority employed and that biodiversity evaluations need to be developed in collaboration or consultation with practicing systematic specialists. 相似文献
16.
Abstract: The umbrella‐species concept, which suggests that conservation strategies designed for one species may benefit co‐occurring species, has been promoted as a framework for conservation planning. Nevertheless, there has been considerable variation in the outcome of empirical tests of this concept that has led researchers to question its value, so we used data from 15 published studies in a meta‐analysis to evaluate whether conservation of putative umbrella species also conserves co‐occurring species. We tested the effectiveness of putative umbrella species categorized by taxonomic group, taxonomic similarity to co‐occurring species, body size, generality of resource use, and trophic level to evaluate criteria proposed to guide the selection of umbrella species. We compared species richness and number of individuals (by species and higher taxonomic group) between sites with and without putative umbrella species to test whether more co‐occurring species were present in greater abundances when the area or resource needs of umbrella species were met. Species richness and abundance of co‐occurring species were consistently higher in sites where umbrella species were present than where they were not and for conservation schemes with avian than with mammalian umbrella species. There were no differences in species richness or species abundance with resource generalist or specialist umbrella species or based on taxonomic similarity of umbrella and co‐occurring species. Taxonomic group abundance was higher in across‐taxonomic umbrella species schemes than when umbrella species were of the same taxon as co‐occurring species. Co‐occurring species had similar, or higher, species richness with small‐bodied umbrella species relative to larger‐bodied umbrella species. The only significant difference among umbrella species categorized by trophic level was that species richness was higher with omnivorous than it was with carnivorous avian umbrella species. Our results suggest there is merit to the umbrella‐species concept for conservation, but they do not support the use of the criteria we used to identify umbrella species. 相似文献
17.
Conservation Genetics at the Species Boundary 总被引:13,自引:0,他引:13
Paul Z. Goldstein§ Robert Desalle George Amato † and Alfried P. Vogler‡ 《Conservation biology》2000,14(1):120-131
Abstract: Conservation genetics has expanded its purview such that molecular techniques are now used routinely to prioritize populations for listing and protection and infer their historical relationships in addition to addressing more traditional questions of heterozygosity and inbreeding depression. Failure to specify whether molecular data are being used for diagnosis-related questions or for population viability questions, however, can lead either to misinterpretation of character data as adaptive information or to misinterpretation of frequency or distance data as diagnostic or historical information. Each of these misinterpretations will confound conservation programs. The character-based approach to delimiting phylogenetic species is both operationally and logically superior to "diagnostic" methods that involve distance- or frequency-based routines, which are unstable over time. Tree-based criteria for the diagnosis of conservation "units" are also inappropriate because they can depend on patterns inferred without reference to diagnostic characters. Intraspecific studies, conservation-related or otherwise, that adopt terminology and methods designed to infer nested hierarchic relationships confuse diagnosis with historical inferences by treating diagnoses as outcomes rather than as precursors to phylogeny reconstruction. A character-based diagnostic approach recognizes the analytical dichotomy between species hierarchies and population statistics and provides a framework for the understanding of each. No species concept, however, should be viewed as an absolute criterion for protecting populations, but as part of a framework from within which identification of protection and management goals can be achieved effectively and defensibly. 相似文献
18.
Beyond Species Richness: Community Similarity as a Measure of Cross-Taxon Congruence for Coarse-Filter Conservation 总被引:13,自引:0,他引:13
JEFFREY C. SU†† DIANE M. DEBINSKI† MARK E. JAKUBAUSKAS‡ KELLY KINDSCHER§ 《Conservation biology》2004,18(1):167-173
Abstract: The use of a surrogate taxon in conservation planning has become questionable because recent evidence suggests that the correlation of species richness between pairs of taxa is highly variable both taxonomically and geographically. Species richness is only one measure of species diversity, however, and recent studies suggest that investigations of cross-taxon congruence should consider a broader range of assessment techniques. The cross-taxon congruence of community similarity between sites among taxa has rarely been examined and may be the most relevant measure of species diversity in the context of coarse-filter conservation strategies. We examined cross-taxon congruence patterns of species richness and community similarity (Bray-Curtis similarity) among birds, butterflies, and vascular plants in montane meadow habitats in the Greater Yellowstone Ecosystem. Although patterns of species richness (Spearman rank correlation) varied between taxa, we consistently found a positive correlation in community similarity (Mantel test) between all pair-wise comparisons of the three taxa (e.g., sites with similar bird communities also had similar butterfly communities). We suggest that the success of a surrogate taxon depends on the technique used to assess surrogacy and the specific approach to conservation planning. In the context of coarse-filter conservation, measures of community similarity may be more appropriate than measures of species richness. Furthermore, the cross-taxon congruency of community similarity in our study suggests that coarse-filter conservation may be tenable in montane meadow communities. 相似文献
19.
20.
Molecular Systematics and the Conservation of Rare Species 总被引:10,自引:0,他引:10
Abstract: Despite the tradition of systematic biology as the science of diversity, systematics has until recently contributed relatively little to the theory and practice of conservation biology. We identify four areas in which systematics could contribute to the conservation of rare plant species: (1) species concepts, (2) the identification of lineages worthy of conservation, (3) the setting of conservation priorities, and (4) the effects of hybridization on the biology and conservation of rare species. Species concepts that incorporate history and reflect phylogeny ultimately will be more useful for preserving biodiversity than those that do not. Phylogenetic analyses involving conspecific populations often reveal multiple lineages that may warrant protection as evolutionarily distinct units. Phylogenetic information also should be considered in setting priorities for conservation. Systematics provides the tools for inferring relationships among organisms and, in conjunction with biogeography, for identifying those areas that harbor many actively speciating groups. Hybridization may lead to the extinction of a rare species, but in other cases, ironically, artificial hybridization with a more widespread congener may be the only way to preserve the gene pool of a rare species. We appeal to systematists to contribute actively to both conservation theory and practice, and we call for the integration of systematics in the establishment of conservation priorities and the development of strategies to preserve Earth's biota. 相似文献