首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract: The International Union for Conservation of Nature (IUCN) Red List of Threatened Species was increasingly used during the 1980s to assess the conservation status of species for policy and planning purposes. This use stimulated the development of a new set of quantitative criteria for listing species in the categories of threat: critically endangered, endangered, and vulnerable. These criteria, which were intended to be applicable to all species except microorganisms, were part of a broader system for classifying threatened species and were fully implemented by IUCN in 2000. The system and the criteria have been widely used by conservation practitioners and scientists and now underpin one indicator being used to assess the Convention on Biological Diversity 2010 biodiversity target. We describe the process and the technical background to the IUCN Red List system. The criteria refer to fundamental biological processes underlying population decline and extinction. But given major differences between species, the threatening processes affecting them, and the paucity of knowledge relating to most species, the IUCN system had to be both broad and flexible to be applicable to the majority of described species. The system was designed to measure the symptoms of extinction risk, and uses 5 independent criteria relating to aspects of population loss and decline of range size. A species is assigned to a threat category if it meets the quantitative threshold for at least one criterion. The criteria and the accompanying rules and guidelines used by IUCN are intended to increase the consistency, transparency, and validity of its categorization system, but it necessitates some compromises that affect the applicability of the system and the species lists that result. In particular, choices were made over the assessment of uncertainty, poorly known species, depleted species, population decline, restricted ranges, and rarity; all of these affect the way red lists should be viewed and used. Processes related to priority setting and the development of national red lists need to take account of some assumptions in the formulation of the criteria.  相似文献   

2.
The IUCN (International Union for Conservation of Nature) Red List categories and criteria are the most widely used framework for assessing the relative extinction risk of species. The criteria are based on quantitative thresholds relating to the size, trends, and structure of species’ distributions and populations. However, data on these parameters are sparse and uncertain for many species and unavailable for others, potentially leading to their misclassification or classification as data deficient. We devised an approach that combines data on land-cover change, species-specific habitat preferences, population abundance, and dispersal distance to estimate key parameters (extent of occurrence, maximum area of occupancy, population size and trend, and degree of fragmentation) and hence predict IUCN Red List categories for species. We applied our approach to nonpelagic birds and terrestrial mammals globally (∼15,000 species). The predicted categories were fairly consistent with published IUCN Red List assessments, but more optimistic overall. We predicted 4.2% of species (467 birds and 143 mammals) to be more threatened than currently assessed and 20.2% of data deficient species (10 birds and 114 mammals) to be at risk of extinction. Incorporating the habitat fragmentation subcriterion reduced these predictions 1.5–2.3% and 6.4–14.9% (depending on the quantitative definition of fragmentation) for threatened and data deficient species, respectively, highlighting the need for improved guidance for IUCN Red List assessors on the application of this aspect of the IUCN Red List criteria. Our approach complements traditional methods of estimating parameters for IUCN Red List assessments. Furthermore, it readily provides an early-warning system to identify species potentially warranting changes in their extinction-risk category based on periodic updates of land-cover information. Given our method relies on optimistic assumptions about species distribution and abundance, all species predicted to be more at risk than currently evaluated should be prioritized for reassessment.  相似文献   

3.
Abstract:  In recent centuries bird species have been deteriorating in status and becoming extinct at a rate that may be 2–3 orders of magnitude higher than in prehuman times. We examined extinction rates of bird species designated critically endangered in 1994 and the rate at which species have moved through the IUCN (World Conservation Union) Red List categories of extinction risk globally for the period 1988–2004 and regionally in Australia from 1750 to 2000. For Australia we drew on historical accounts of the extent and condition of species habitats, spread of invasive species, and changes in sighting frequencies. These data sets permitted comparison of observed rates of movement through the IUCN Red List categories with novel predictions based on the IUCN Red List criterion E, which relates to explicit extinction probabilities determined, for example, by population viability analysis. The comparison also tested whether species listed on the basis of other criteria face a similar probability of moving to a higher threat category as those listed under criterion E. For the rate at which species moved from vulnerable to endangered, there was a good match between observations and predictions, both worldwide and in Australia. Nevertheless, species have become extinct at a rate that, although historically high, is 2 (Australia) to 10 (globally) times lower than predicted. Although the extinction probability associated with the critically endangered category may be too high, the shortfall in realized extinctions can also be attributed to the beneficial impact of conservation intervention. These efforts may have reduced the number of global extinctions from 19 to 3 and substantially slowed the extinction trajectory of 33 additional critically endangered species. Our results suggest that current conservation action benefits species on the brink of extinction, but is less targeted at or has less effect on moderately threatened species.  相似文献   

4.
Establishing IUCN Red List Criteria for Threatened Ecosystems   总被引:1,自引:0,他引:1  
Abstract: The potential for conservation of individual species has been greatly advanced by the International Union for Conservation of Nature's (IUCN) development of objective, repeatable, and transparent criteria for assessing extinction risk that explicitly separate risk assessment from priority setting. At the IV World Conservation Congress in 2008, the process began to develop and implement comparable global standards for ecosystems. A working group established by the IUCN has begun formulating a system of quantitative categories and criteria, analogous to those used for species, for assigning levels of threat to ecosystems at local, regional, and global levels. A final system will require definitions of ecosystems; quantification of ecosystem status; identification of the stages of degradation and loss of ecosystems; proxy measures of risk (criteria); classification thresholds for these criteria; and standardized methods for performing assessments. The system will need to reflect the degree and rate of change in an ecosystem's extent, composition, structure, and function, and have its conceptual roots in ecological theory and empirical research. On the basis of these requirements and the hypothesis that ecosystem risk is a function of the risk of its component species, we propose a set of four criteria: recent declines in distribution or ecological function, historical total loss in distribution or ecological function, small distribution combined with decline, or very small distribution. Most work has focused on terrestrial ecosystems, but comparable thresholds and criteria for freshwater and marine ecosystems are also needed. These are the first steps in an international consultation process that will lead to a unified proposal to be presented at the next World Conservation Congress in 2012.  相似文献   

5.
The International Union for Conservation of Nature (IUCN) Red List is an important and widely used tool for conservation assessment. The IUCN uses information about a species’ range, population size, habitat quality and fragmentation levels, and trends in abundance to assess extinction risk. Genetic diversity is not considered, although it affects extinction risk. Declining populations are more strongly affected by genetic drift and higher rates of inbreeding, which can reduce the efficiency of selection, lead to fitness declines, and hinder species’ capacities to adapt to environmental change. Given the importance of conserving genetic diversity, attempts have been made to find relationships between red-list status and genetic diversity. Yet, there is still no consensus on whether genetic diversity is captured by the current IUCN Red List categories in a way that is informative for conservation. To assess the predictive power of correlations between genetic diversity and IUCN Red List status in vertebrates, we synthesized previous work and reanalyzed data sets based on 3 types of genetic data: mitochondrial DNA, microsatellites, and whole genomes. Consistent with previous work, species with higher extinction risk status tended to have lower genetic diversity for all marker types, but these relationships were weak and varied across taxa. Regardless of marker type, genetic diversity did not accurately identify threatened species for any taxonomic group. Our results indicate that red-list status is not a useful metric for informing species-specific decisions about the protection of genetic diversity and that genetic data cannot be used to identify threat status in the absence of demographic data. Thus, there is a need to develop and assess metrics specifically designed to assess genetic diversity and inform conservation policy, including policies recently adopted by the UN's Convention on Biological Diversity Kunming-Montreal Global Biodiversity Framework.  相似文献   

6.
Population models for multiple species provide one of the few means of assessing the impact of alternative management options on the persistence of biodiversity, but they are inevitably uncertain. Is it possible to use population models in multiple-species conservation planning given the associated uncertainties? We use information-gap decision theory to explore the impact of parameter uncertainty on the conservation decision when planning for the persistence of multiple species. An information-gap approach seeks robust outcomes that are most immune from error. We assess the impact of uncertainty in key model parameters for three species, whose extinction risks under four alternative management scenarios are estimated using a metapopulation model. Three methods are described for making conservation decisions across the species, taking into account uncertainty. We find that decisions based on single species are relatively robust to uncertainty in parameters, although the estimates of extinction risk increase rapidly with uncertainty. When identifying the best conservation decision for the persistence of all species, the methods that rely on the rankings of the management options by each species result in decisions that are similarly robust to uncertainty. Methods that depend on absolute values of extinction risk are sensitive to uncertainty, as small changes in extinction risk can alter the ranking of the alternative scenarios. We discover that it is possible to make robust conservation decisions even when the uncertainties of the multiple-species problem appear overwhelming. However, the decision most robust to uncertainty is likely to differ from the best decision when uncertainty is ignored, illustrating the importance of incorporating uncertainty into the decision-making process.  相似文献   

7.
The International Union for Conservation of Nature (IUCN) Red List of Threatened Species, a species extinction risk assessment tool, has been guiding conservation efforts for over 5 decades. It is widely assumed to have been instrumental in preventing species from moving closer to extinction and driving recoveries. However, the impact of the IUCN Red List in guiding conservation has not been evaluated. We conducted, transcribed, and coded interviews with experts who use the IUCN Red List across a range of sectors to understand how the list is used in conservation. We developed a theory of change to illustrate how and why change is expected to occur along causal pathways contributing to the long-term goal of the IUCN Red List and an evaluation framework with indicators for measuring the impact of the IUCN Red List in generating scientific knowledge, raising awareness among stakeholders, designating priority conservation sites, allocating funding and resources, influencing development of legislation and policy, and guiding targeted conservation action (key themes). Red-list assessments were the primary input leading to outputs (scientific knowledge, raised awareness), outcomes (better informed priority setting, access to funding and resource availability, improved legislation and policy), and impact (implemented conservation action leading to positive change) that have resulted in achievement of IUCN Red List goals. To explore feasibility of attributing the difference made by the IUCN Red List across themes, we studied increased scientific knowledge, raised awareness, access to funding and resource allocation, and increased conservation activity. The feasibility exploration showed increased scientific knowledge over time identified through positive trends in publications referring to the IUCN Red List in the literature; raised awareness of the list following high IUCN activity identified by peaks in online search activity; an increased proportion of conservation funding bodies requesting IUCN Red List status in the application process; and, based on interviews with Amphibian Specialist Group members, red-list assessments were essential in connecting relevant stakeholders and ensuring conservation action. Although we identified the IUCN Red List as a vital tool in global conservation efforts, it was challenging to measure specific impacts because of its ubiquitous nature. We are the first to identify the influence of the IUCN Red List on conservation.  相似文献   

8.
For decades conservation biologists have proposed general rules of thumb for minimum viable population size (MVP); typically, they range from hundreds to thousands of individuals. These rules have shifted conservation resources away from small and fragmented populations. We examined whether iteroparous, long‐lived species might constitute an exception to general MVP guidelines. On the basis of results from a 10‐year capture‐recapture study in eastern New York (U.S.A.), we developed a comprehensive demographic model for the globally threatened bog turtle (Glyptemys muhlenbergii), which is designated as endangered by the IUCN in 2011. We assessed population viability across a wide range of initial abundances and carrying capacities. Not accounting for inbreeding, our results suggest that bog turtle colonies with as few as 15 breeding females have >90% probability of persisting for >100 years, provided vital rates and environmental variance remain at currently estimated levels. On the basis of our results, we suggest that MVP thresholds may be 1–2 orders of magnitude too high for many long‐lived organisms. Consequently, protection of small and fragmented populations may constitute a viable conservation option for such species, especially in a regional or metapopulation context. Reexaminando el Concepto de Población Mínima Viable para Especies Longevas Resumen  相似文献   

9.
Anthropogenic climate change is a key threat to global biodiversity. To inform strategic actions aimed at conserving biodiversity as climate changes, conservation planners need early warning of the risks faced by different species. The IUCN Red List criteria for threatened species are widely acknowledged as useful risk assessment tools for informing conservation under constraints imposed by limited data. However, doubts have been expressed about the ability of the criteria to detect risks imposed by potentially slow‐acting threats such as climate change, particularly because criteria addressing rates of population decline are assessed over time scales as short as 10 years. We used spatially explicit stochastic population models and dynamic species distribution models projected to future climates to determine how long before extinction a species would become eligible for listing as threatened based on the IUCN Red List criteria. We focused on a short‐lived frog species (Assa darlingtoni) chosen specifically to represent potential weaknesses in the criteria to allow detailed consideration of the analytical issues and to develop an approach for wider application. The criteria were more sensitive to climate change than previously anticipated; lead times between initial listing in a threatened category and predicted extinction varied from 40 to 80 years, depending on data availability. We attributed this sensitivity primarily to the ensemble properties of the criteria that assess contrasting symptoms of extinction risk. Nevertheless, we recommend the robustness of the criteria warrants further investigation across species with contrasting life histories and patterns of decline. The adequacy of these lead times for early warning depends on practicalities of environmental policy and management, bureaucratic or political inertia, and the anticipated species response times to management actions. Detección del Riesgo de Extinción a partir del Cambio Climático por medio del Criterio de la Lista Roja de la UICNKeith et al.  相似文献   

10.
Hei F 《Ecology》2012,93(5):974-980
Underpinning the International Union for Conservation of Nature (IUCN) Red List is the assessment of extinction risk as determined by the size and degree of loss of populations. The IUCN system lists a species as Critically Endangered, Endangered, or Vulnerable if its population size declines 80%, 50%, or 30% within a given time frame. However, effective implementation of the system faces substantial challenges and uncertainty because geographic scale data on population size and long-term dynamics are scarce. I develop a model to quantify extinction risk using a measure based on a species' distribution, a much more readily obtained quantity. The model calculates the loss of the area of occupancy that is equivalent to the loss of a given proportion of a population. It is a very simple yet general model that has no free parameters and is independent of scale. The model predicted well the distributions of 302 tree species at a local scale and the distributions of 348 species of North American land birds. This area-based model provides a solution to the long-standing problem for IUCN assessments of lack of data on population sizes, and thus it will contribute to facilitating the quantification of extinction risk worldwide.  相似文献   

11.
Abstract:  The World Conservation Union (IUCN) published guidelines to apply the criteria developed for global red lists at subglobal levels. So far only a few national red lists have been prepared according to these regional guidelines. We present a procedure based on the regional guidelines that was developed for the most recent red list of breeding birds in Switzerland. Special attention was given to step 2 of the IUCN regional guidelines, which consists of adapting categories according to an assessment of the extent to which extinction risk of the national population is affected by populations in neighboring countries. To avoid subjective assessments we formalized this "up- and downgrading" procedure by defining rules to answer the questions asked in the regional guidelines. Some modifications to the assessment procedure were introduced to account for the specific situation of applying it to birds as a very mobile group and Switzerland as a small country. The up- and downgrading procedure resulted in a change in category for 49 of the 195 bird species assessed. Overall, 9 species were upgraded, 21 species were downgraded by one category, and 19 species were downgraded by two categories. Formalizing step 2 allowed consistent application of the regional guidelines for all species and will make future revisions of the national red list and comparisons between different lists easier.  相似文献   

12.
International Union for Conservation of Nature (IUCN) Red List assessments are essential for prioritizing conservation needs but are resource intensive and therefore available only for a fraction of global species richness. Automated conservation assessments based on digitally available geographic occurrence records can be a rapid alternative, but it is unclear how reliable these assessments are. We conducted automated conservation assessments for 13,910 species (47.3% of the known species in the family) of the diverse and globally distributed orchid family (Orchidaceae), for which most species (13,049) were previously unassessed by IUCN. We used a novel method based on a deep neural network (IUC-NN). We identified 4,342 orchid species (31.2% of the evaluated species) as possibly threatened with extinction (equivalent to IUCN categories critically endangered [CR], endangered [EN], or vulnerable [VU]) and Madagascar, East Africa, Southeast Asia, and several oceanic islands as priority areas for orchid conservation. Orchidaceae provided a model with which to test the sensitivity of automated assessment methods to problems with data availability, data quality, and geographic sampling bias. The IUC-NN identified possibly threatened species with an accuracy of 84.3%, with significantly lower geographic evaluation bias relative to the IUCN Red List and was robust even when data availability was low and there were geographic errors in the input data. Overall, our results demonstrate that automated assessments have an important role to play in identifying species at the greatest risk of extinction.  相似文献   

13.
The International Union for Conservation of Nature (IUCN) Red List Index (RLI) is used to measure trends in extinction risk of species over time. The development of 2 red lists for Spanish vascular flora during the past decade allowed us to apply the IUCN RLI to vascular plants in an area belonging to a global biodiversity hotspot. We used the Spanish Red Lists from 2000 and 2010 to assess changes in level of threat at a national scale and at the subnational scales of Canary Islands, Balearic Islands, and peninsular Spain. We assigned retrospective IUCN categories of threat to 98 species included in the Spanish Red List of 2010 but absent in the Spanish Red List of 2000. In addition, we tested the effect of different random and taxonomic and spatial Spanish samples on the overall RLI value. From 2000 to 2010, the IUCN categories of 768 species changed (10% of Spanish flora), mainly due to improved knowledge (63%), modifications in IUCN criteria (14%), and changes in threat status (12%). All measured national and subnational RLI values decreased during this period, indicating a general decline in the conservation status of the Spanish vascular flora. The Canarian RLI value (0.84) was the lowest, although the fastest deterioration in conservation status occurred on peninsular Spain (from 0.93 in 2000 to 0.92 in 2010). The RLI values based on subsamples of the Spanish Red List were not representative of RLI values for the entire country, which would discourage the use of small areas or small taxonomic samples to assess general trends in the endangerment of national biotas. The role of the RLI in monitoring of changes in biodiversity at the global and regional scales needs further reassessment because additional areas and taxa are necessary to determine whether the index is sufficiently sensitive for use in assessing temporal changes in species’ risk of extinction.  相似文献   

14.
Abstract: Conservationists are increasingly interested in determining the threat status of ecological communities as a key part of their planning efforts. Such assessments are difficult because of conceptual challenges and a lack of generally accepted criteria. We reviewed 12 protocols for assessing the threat status of communities and identified conceptual and operational issues associated with developing a rigorous, transparent, and universal set of criteria for assessing communities, analogous to the International Union for Conservation of Nature (IUCN) Red List standards for species. We examined how each protocol defines a community and its extinction and how each applies 3 overarching criteria: decline in geographic distribution, restricted geographic distribution, and changes to ecological function. The protocols vary widely in threshold values used to assess declines and distribution size and the time frames used to assess declines, leading to inconsistent assessments of threat status. Few of the protocols specify a scale for measuring distribution size, although assessment outcomes are highly sensitive to scale. Protocols that apply different thresholds for species versus communities tend to require greater declines and more restricted distributions for communities than species to be listed in equivalent threat categories. Eleven of the protocols include a reduction in ecological function as a criterion, but almost all assess it qualitatively rather than quantitatively. We argue that criteria should be explicit and repeatable in their concepts, parameters, and scale, applicable to a broad range of communities, and address synergies between types of threats. Such criteria should focus on distribution size, declines in distribution, and changes to key ecological functions, with the latter based on workable proxies for assessing the severity, scope, and immediacy of degradation. Threat categories should be delimited by thresholds that are assessed at standard scales and are logically consistent with the viability of component species and important ecological functions.  相似文献   

15.
Abstract:  The national systems used in the evaluation of extinction risk are often touted as more readily applied and somehow more regionally appropriate than the system of the International Union for Conservation of Nature (IUCN). We compared risk assessments of the Mexican national system (method for evaluation of risk of extinction of wild species [MER]) with the IUCN system for the 16 Polianthes taxa (Agavaceae), a genus of plants with marked variation in distribution sizes. We used a novel combination of herbarium data, geographic information systems (GIS), and species distribution models to provide rapid, repeatable estimates of extinction risk. Our GIS method showed that the MER and the IUCN system use similar data. Our comparison illustrates how the IUCN method can be applied even when all desirable data are not available, and that the MER offers no special regional advantage with respect to the IUCN regional system. Instead, our results coincided, with both systems identifying 14 taxa of conservation concern and the remaining two taxa of low risk, largely because both systems use similar information. An obstacle for the application of the MER is that there are no standards for quantifying the criteria of habitat condition and intrinsic biological vulnerability. If these impossible-to-quantify criteria are left out, what are left are geographical distribution and the impact of human activity, essentially the considerations we were able to assess for the IUCN method. Our method has the advantage of making the IUCN criteria easy to apply, and because each step can be standardized between studies, it ensures greater comparability of extinction risk estimates among taxa.  相似文献   

16.
I examine whether or not it is appropriate to use extinction probabilities generated by population viability analyses, based on best estimates for model parameters, as criteria for listing species in Red Data Book categories as recently proposed by the World Conservation Union. Such extinction probabilities are influenced by how accurately model parameters are estimated and by how accurately the models depict actual population dynamics. I evaluate the effect of uncertainty in parameter estimation through simulations. Simulations based on Steller sea lions were used to evaluate bias and precision in estimates of probability of extinction and to consider the performance of two proposed classification schemes. Extinction time estimates were biased (because of violation of the assumption of stable age distribution) and underestimated the variability of probability of extinction for a given time (primarily because of uncertainty in parameter estimation). Bias and precision in extinction probabilities are important when these probabilities are used to compare the risk of extinction between species. Suggestions are given for population viability analysis techniques that incorporate parameter uncertainty. I conclude that testing classification schemes with simulations using quantitative performance objectives should precede adoption of quantitative listing criteria.  相似文献   

17.
Estimates of species geographic ranges constitute critical input for biodiversity assessments, including those for the International Union for the Conservation of Nature (IUCN) Red List of Threatened Species. Area of occupancy (AOO) is one metric that IUCN uses to quantify a species’ range, but data limitations typically lead to either under- or overestimates (and unnecessarily wide bounds of uncertainty). Fortunately, existing methods in which range maps and land-cover data are used to estimate the area currently holding habitat for a species can be extended to yield an unbiased range of plausible estimates for AOO. Doing so requires estimating the proportion of sites (currently containing habitat) that a species occupies within its range (i.e., prevalence). Multiplying a quantification of habitat area by prevalence yields an estimate of what the species inhabits (i.e., AOO). For species with intense sampling at many sites, presence–absence data sets or occupancy modeling allow calculation of prevalence. For other species, primary biodiversity data (records of a species’ presence at a point in space and time) from citizen-science initiatives and research collections of natural history museums and herbaria could be used. In such cases, estimates of sample prevalence should be corrected by dividing by the species’ detectability. To estimate detectability from these data sources, extensions of inventory-completeness analyses merit development. With investments to increase the quality and availability of online biodiversity data, consideration of prevalence should lead to tighter and more realistic bounds of AOO for many taxonomic groups and geographic regions. By leading to more realistic and representative characterizations of biodiversity, integrating maps of current habitat with estimates of prevalence should empower conservation practitioners and decision makers and thus guide actions and policy worldwide.  相似文献   

18.
Attitudes toward Sustainability and Extinction   总被引:1,自引:0,他引:1  
Abstract: Conservation biologists and natural resource managers are both working to maintain species, but their approaches and priorities differ. The contrast was highlighted when the World Conservation Union (IUCN) listed some commercial fish species, such as the Atlantic cod ( Gadus morhua ), in the 1996 Red List of Threatened Animals. These species qualified under IUCN's criteria because they had undergone a marked decline in abundance. Disagreements over these listings revealed fundamental differences between resource managers and conservation biologists. Resource managers aiming to maximize continuing yields using specific, explicit, and data-rich models, generally have not considered risk assessment and sometimes face the necessity for political compromises. Conservation biologists generally consider a wide diversity of species and operate in a data-poor and precautionary context with an overall aim of minimizing extinction risk. The IUCN Red List is an extreme case in point and uses simple criteria for evaluating the conservation status of all species. Under these circumstances, it can do little more than indicate a species' status in order to prompt further investigation by the appropriate body. We suggest that productive collaboration between conservation biologists and resource managers will start with an understanding of these different perspectives and will benefit from common interests in precautionary approaches, ecosystem approaches, and adaptive management studies.  相似文献   

19.
Hydrothermal vents are rare deep-sea oases that house faunal assemblages with a similar density of life as coral reefs. Only approximately 600 of these hotspots are known worldwide, most only one-third of a football field in size. With advancing development of the deep-sea mining industry, there is an urgent need to protect these unique, insular ecosystems and their specialist endemic faunas. We applied the IUCN (International Union for the Conservation of Nature) Red List criteria to assess the extinction risk of vent-endemic molluscs with varying exposure to potential deep-sea mining. We assessed 31 species from three key areas under different regulatory frameworks in the Indian, West Pacific, and Southern Oceans. Three vent mollusc species were also examined as case studies of different threat contexts (protected or not from potential mining) to explore the interaction of local regulatory frameworks and IUCN Red List category assignment. We found that these assessments were robust even when there was some uncertainty in the total range of individual species, allowing assessment of species that have only recently been named and described. For vent-endemic species, regulatory changes to area-based management can have a greater impact on IUCN Red List assessment outcomes than incorporating additional data about species distributions. Our approach revealed the most useful IUCN Red List criteria for vent-endemic species: criteria B and D2. This approach, combining regulatory framework and distribution, has the potential to rapidly gauge assessment outcomes for species in insular systems worldwide.  相似文献   

20.
Information on population sizes and trends of threatened species is essential for their conservation, but obtaining reliable estimates can be challenging. We devised a method to improve the precision of estimates of population size obtained from capture–recapture studies for species with low capture and recapture probabilities and short seasonal activity, illustrated with population data of an elusive grasshopper (Prionotropis rhodanica). We used data from 5 capture–recapture studies to identify methodological and environmental factors affecting capture and recapture probabilities and estimates of population size. In a simulation, we used the population size and capture and recapture probability estimates obtained from the field studies to identify the minimum number of sampling occasions needed to obtain unbiased and robust estimates of population size. Based on these results we optimized the capture–recapture design, implemented it in 2 additional studies, and compared their precision with those of the nonoptimized studies. Additionally, we simulated scenarios based on thresholds of population size in criteria C and D of the International Union for Conservation of Nature (IUCN) Red List to investigate whether estimates of population size for elusive species can reliably inform red-list assessments. Identifying parameters that affect capture and recapture probabilities (for the grasshopper time since emergence of first adults) and optimizing field protocols based on this information reduced study effort (−6% to −27% sampling occasions) and provided more precise estimates of population size (reduced coefficient of variation) compared with nonoptimized studies. Estimates of population size from the scenarios based on the IUCN thresholds were mostly unbiased and robust (only the combination of very small populations and little study effort produced unreliable estimates), suggesting capture–recapture can be considered reliable for informing red-list assessments. Although capture–recapture remains difficult and costly for elusive species, our optimization procedure can help determine efficient protocols to increase data quality and minimize monitoring effort.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号