首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured the horizontal and vertical movements of five adult yellowfin tuna (Thunnus albacares, estimated body mass 64 to 93 kg) near the main Hawaiian Islands, while simultaneously gathering data on oceanographic conditions and currents. Fish movements were recorded by means of ultrasonic depth-sensitive transmitters. Depth–temperature and depth–oxygen profiles were measured with vertical conductivity–temperature–depth (CTD) casts, and the current-velocity field was surveyed using an acoustic Doppler current profiler (ADCP). Large adult yellowfin tuna spent ≃60 to 80% of their time in or immediately below the relatively uniform-temperature surface-layer (i.e. above 100 m), a behavior pattern similar to that previously reported for juvenile yellowfin tuna, blue marlin (Makaira nigricans), and striped marlin (Tetrapturus audax) tracked in the same area. In all three species, maximum swimming depths appear to be limited by water temperatures 8 C° colder than the surface-layer water temperature. Therefore, neither large body mass, nor the ability to maintain elevated swimming-muscle temperatures due to the presence of vascular counter-current heat exchangers in tunas, appears to permit greater vertical mobility or the ability to remain for extended periods below the thermocline. In those areas where the decrease in oxygen with depth is not limiting, the vertical movements of yellowfin tuna, blue marlin and striped marlin all appear to be restricted by the effects of water temperature on cardiac muscle function. Like juvenile yellowfin tuna, but unlike blue marlin and striped marlin, adult yellowfin tuna remained within 18.5 km of the coast and became associated with floating objects, including anchored fish-aggregating devices (FADs) and the tracking vessel. Like juvenile yellowfin tuna, large adult yellowfin repeatedly re-visit the same FAD, and appear able to navigate precisely between FADs that are up to 18 km apart. The median speed over ground ranged from 72 to 154 cm s−1. Neither speed nor direction was strongly influenced by currents. Received: 27 March 1998 / Accepted: 13 November 1998  相似文献   

2.
Six Pacific bluefin tuna were tracked with ultrasonic telemetry and two with pop-up satellite archival tags (PSATs) in the eastern Pacific Ocean in 1997, 1998, and 1999. Both pressure and temperature ultrasonic transmitters were used to examine the behavior of the 2- to 4-year-old bluefin tuna. The bluefin spent over 80% of their time in the top 40 m of the water column and made occasional dives into deeper, cooler water. The mean slow-oxidative muscle temperatures of three fish instrumented with pressure and temperature transmitters were 22.0–26.1 °C in water temperatures that averaged 15.7–17.5 °C. The thermal excesses in slow-oxidative muscle averaged 6.2–8.6 °C. Variation in the temperature of the slow-oxidative muscle in the bluefin was not correlated with water temperature or swimming speeds. For comparison with the acoustic tracking data we examined the depth and ambient temperature of two Pacific bluefin tagged with pop-up satellite archival tags for 24 and 52 days. The PSAT data sets show depth and temperature distributions of the bluefin tuna similar to the acoustic data set. Swimming speeds calculated from horizontal distances with the acoustic data indicate the fish mean speeds were 1.1–1.4 fork lengths/s (FL s−1). These Pacific bluefin spent the majority of their time in the top parts of the water column in the eastern Pacific Ocean in a pattern similar to that observed for yellowfin tuna. Received: 4 April 2000 / Accepted: 25 October 2000  相似文献   

3.
Ultrasonic, depth-sensitive transmitters were used to track the horizontal and vertical movements, for up to 48 h, of 11 adult (136 to 340 kg estimated body mass) North Atlantic bluefin tuna (Thunnus thynnus Linnaeus). Fish were tracked in October 1995, September and October 1996, and August and September 1997 in the Gulf of Maine, northwestern Atlantic. The objective was to document the behavior of these fish and their schools in order to provide the spatial, temporal, and environmental information required for direct (i.e. fishery-independent) assessment of adult bluefin tuna abundance using aerial surveys. Transmitters were attached to free-swimming fish using a harpoon attachment technique, and all fish remained within the Gulf of Maine while being followed. Most of the bluefin tuna tagged on Stellwagen Bank or in Cape Cod Bay (and followed for at least 30 h) held a predominately easterly course with net horizontal displacements of up to 76 km d−1. Mean (±SD) swimming depth for all fish was 14 ± 4.7 m and maximum depth for individuals ranged from 22 to 215 m. All but one fish made their deepest excursions, often single descents, at dawn and dusk. In general, adult bluefin tuna spent <8% of their time at the surface (0 to 1 m), <19% in the top 4 m, but >90% in the uppermost 30 m. Mean (±SD) speed over ground was 5.9 km h−1, but for brief periods surpassed 20 to 31 km h−1. Sea surface temperatures during tracking were 11.5 to 22.0 °C, and minimum temperatures encountered by the fish ranged from 6.0 to 9.0 °C. Tagged bluefin tuna and their schools frequented ocean fronts marked by mixed vertebrate feeding assemblages, which included sea birds, baleen whales, basking sharks, and other bluefin schools. Received: 19 July 1999 / Accepted: 25 March 2000  相似文献   

4.
Late larvae of the serranid coral trout Plectropomus leopardus (Lacepède), captured in light traps, were released during the day both in open water and adjacent to two reefs, and their behaviour was observed by divers at Lizard Island, northern Great Barrier Reef. Coral trout larvae (n = 110) were present in light-trap catches from 18 November to 3 December 1997, including new moon (30 November). The swimming speed of larvae in open water or when swimming away from reefs was significantly greater (mean 17.9 cm s−1) than the speed of larvae swimming towards or over reefs (mean 7.2 cm s−1). Near reefs, larvae swam at average depths of 2.7 to 4.2 m, avoiding 0 to 2 m. In open water, swimming depth varied with location: larvae >1 km east of Lizard Island swam steeply downward to >20 m in 2 to 4 min; larvae >1 km west oscillated between 2.6 and 13 m; larvae 100 to 200 m east of Lizard Island oscillated between 0.8 and 15 m. Nearly all larvae swam directionally in open water and near reefs. In open water, the average swimming direction of all larvae was towards the island, and 80% (4 of 5) swam directionally (p < 0.05, Rayleigh's test). Larvae swam directionally over the reef while looking for settlement sites. The frequency of behaviours by larvae differed between two reefs of different exposure and morphology. Depending on site, 26 to 32% of larvae released adjacent to reefs swam to open water: of these, some initially swam towards or over the reef before swimming offshore. In some cases, offshore-swimming seemed to be due to the presence of predators, but usually no obvious cause was observed. Depending on the reef, 49 to 64% of the larvae settled. Non-predatory reef residents aggressively approached 19% of settlers. Between 5 and 17% of the larvae were eaten while approaching the reef or attempting to settle, primarily by lizardfishes but also by wrasses, groupers and snappers. A higher percentage of larvae settled in the second week of our study than in the first. Average time to settlement was short (138 s ± 33 SE), but some larvae took up to 15 min to settle. Average settlement depth was 7.5 to 9.9 m, and differed between locations. No settlement took place on reef flats or at depths <4.2 m. Larvae did not appear to be selective about settlement substrate, but settled most frequently on live and dead hard coral. Late-stage larvae of coral trout are capable swimmers with considerable control over speed, depth and direction. Habitat selection, avoidance of predators and settlement seem to rely on vision. Received: 7 July 1998 / Accepted: 26 January 1999  相似文献   

5.
The aim of our investigations was to determine, via oxygen and carbon-dioxide respirometry, how much energy dolphins (Tursiops truncatus) require when swimming at different speeds. Experiments were conducted on two female bottlenose dolphins (mean mass 162 kg) in the dolphinarium in Nuremberg Zoo, Germany, between March and August 1997. Animals were stationed in a respiration chamber for a minimum of 90 s after performing a variety of activities. We measured respiration frequency and oxygen requirements during (1) resting, (2) swimming at various velocities and (3) leaping to various heights. Resting metabolic rate of our bottlenose dolphins (2.15 W kg−1) was comparable to previously published data. Metabolic rate in swimming dolphins increased to 2.47 W kg−1 at 2 m s−1, while leaps to 2.2 and 3 m height required a power input of 3.5 and 4 W kg−1, respectively. Transport costs of swimming dolphins were lowest (1.16 J kg−1 m−1, corresponding to 0.12 J N−1 m−1) at a speed of 2.5 m s−1, yielding an optimal range speed of between 1.9 and 3.2 m s−1 (corresponding to minimum cost of transport ±10%). Breathing rates during all experiments correlated very well with oxygen consumption (r 2 > 0.89) and could be used to derive metabolic rates in unencumbered dolphins at sea. Received: 18 December 1998 / Accepted: 27 April 1999  相似文献   

6.
Besides diatoms Demospongiae are the most important consumers of dissolved silica in the sea. They can play an important role for the silica budget especially in the shallow water areas of the Baltic Sea. The dependence of the silica uptake rate on the silica concentration of the seawater was measured for the sponge Halichondria panicea (Pallas, 1766). The sponges were collected in Kiel Bight. The uptake conformed to Michaelis–Menten kinetics with a half-saturation constant of 46.41 μM and a saturated uptake rate of 19.33 μmol h−1 g−1 ( p < 0.01). In the red algae zone of Kiel Bight the sponges depend on silica supply from the surrounding waters and may be silica-limited rather than food-limited in growth. Because of the much faster uptake of silica by diatoms and their lower saturation point, as well as the difference in spatial distribution of the two main silica consumers, a competition for silica between sponges and diatoms seems unlikely. Received: 21 June 1997 / Accepted: 15 July 1997  相似文献   

7.
Seasonal sampling was carried out based on day/night, vertically stratified tows (100 or 125 m strata) in the upper 900 m of the water column over the mid-slope commercial fishing grounds south of Tasmania. A large midwater trawl (105 m2 mouth area) was used with an opening/closing cod-end. Subtropical convergence and subtropical species dominated the fauna, but many less abundant, more widely-distributed species were also present. Fishes, which contributed 89% of micronekton biomass and 135 of 178 species, were dominated by the Myctophidae (48% biomass and 48 species). Twenty micronekton species made up 80% of the total biomass. Overall, the micronekton fish biomass in this region was 2.2 g m−2 wet weight. A pronounced day/night shift in the distribution of biomass was attributable to diel migratory species. During the day, <0.2% of the total micronekton biomass was found in 0 to 300 m; most biomass was below 400 m, with peaks at 400 to 525 m and 775 to 900 m. At night, 53% of the biomass was found in 0 to 300 m, with progressively less in each deeper stratum. The vertical ranges of individual species typically exceeded 400 to 500 m during the day and night and were non-coincident, although nyctoepipelagic migrators were concentrated in the surface 200 m at night. Distinct epipelagic, lower and upper mesopelagic assemblages were identified, and patterns of epipelagic migration, limited migration and non-migration were categorised for species from each of the lower and upper mesopelagic assemblages. The vertical distribution of these assemblages was coincident with the primary water masses: subantarctic mode water (∼250 to 600 m) and antarctic intermediate water (below ∼700 m). The flux of migrating micronekton, estimated at 0.94 to 3.36 g C m−2 yr−1 to the lower mesopelagic and 1.14 to 4.06 g C m−2 yr−1 to the upper mesopelagic, appeared to be considerably outweighed by the consumption needs of aggregated mid-slope benthopelagic predators. We suggest that advection of mesopelagic prey in antarctic intermediate water may sustain aggregated populations of orange roughy (Hoplostethus atlanticus) and other predators on the micronekton in mid-slope depths at this site. Received: 2 April 1997 / Accepted: 21 August 1997  相似文献   

8.
The post-release behaviour of eight black marlin (Makaira indica), caught by standard sportfishing techniques off the Great Barrier Reef, Australia, was investigated using ultrasonic telemetry. Five marlin between 100 and 420 kg were successfully tracked for periods of 8 to 27 h. Of the three others tagged, one was killed by a shark and two shed their tags, probably as the result of poor attachment. The black marlin spent most of their time within 10 m of the surface, both day and night. During the day, however, they also spent some time between 40 and 140 m depth. They rarely penetrated the thermocline, and then only briefly, remaining at temperatures no more than 8 C° below that of surface waters. The deepest dives were to 178 m. Four of the five marlin tracked, initially moved offshore before heading parallel to the shore, whereas the other marlin stayed close to the reef edge. The average mean swimming speeds over the ground for entire tracks ranged from 0.7 to 1.02 m s−1. Received: 17 January 1997 / Accepted: 16 June 1999  相似文献   

9.
A series of laboratory (short-term exposure in small beakers) studies and a 19 d mesocosm (6 m3 polyethylene bags filled with fjord water) study were conducted on blue mussel, Mytilus edulis, larvae and plantigrades exposed to a concentration gradient of the detergent linear alkylbenzene sulphonate (LAS, 0 to 39 mg l−1). LAS is increasingly found in nearshore environments receiving wastewater from urban treatment plants. The aims were to observe physiological effects on swimming, grazing and growth in the laboratory and effects on settling and population development at in situ conditions (in field mesocosms) in order to evaluate the damages on ciliated meroplankton caused by LAS. In the laboratory the larvae showed a 50% mortality at 3.8 mg LAS l−1 after 96 h exposure whether or not food was provided. Additionally the swimming behaviour was affected at 0.8 mg LAS l−1 (i.e. a more compact swimming track, a smaller diameter of the swimming tracks, and reduced swimming speed). The larval particle grazing was reduced 50% at 1.4 mg LAS l−1. The specific growth rate of the larvae was reduced to half at 0.82 mg LAS l−1 over 9 d. During the mesocosm experiment, the larval population showed a dramatic decrease in abundance within 2 d at concentrations as low as 0.08 mg LAS l−1, both due to a significantly increased mortality, but also due to settling. The settling success was reduced at the same LAS concentration as that at which mortality was observed to increase significantly. In addition to reduced settling rate, the larvae showed delayed metamorphosis and reduced shell growth as a response to LAS. Our hypothesis that the larval ciliary apparatus, crucial for normal swimming, orientation, and settling behaviours and for particle uptake, was damaged due to LAS exposure is supported by our results. This is confirmed by the physiological data (grazing, growth) and in the direct video-based observations of larval performance (swimming) and provides a reasonable explanation for what was observed in the bags (abundance, settling, mortality). These physiological effects on blue mussel larvae/plantigrades occurred at LAS concentrations reported to occur in estuarine waters. Received: 15 January 1997 / Accepted: 12 February 1997  相似文献   

10.
The importance of Euphausia pacifica Hansen to the demersal fish community off Sendai Bay, northern Japan, was studied based on a total of 256 trawl samples collected during May, October and November, from 1989 to 1992. The samples were classified into 16 assemblages according to year, month and depth. The importance of E. pacifica to the total diet of each of the assemblages was measured using an index considering both fish diet and species composition. A total of 24 fish species out of 87 were found to ingest E. pacifica. Of these, Gadus macrocephaus and Theragra chalcogramma had the highest predation impact due to their dominance in the fish assemblages and the high proportion of E. pacifica in their diets. The contribution of E. pacifica to the total diet of the fish assemblage was highest in the shallow (≤300 m) regions during May, accounting for an average of 38.5% for the 4 years. However, during May 1990, when the warm Kuroshio Extension prevailed, the contribution was higher in the deep (>300 m; 22.6%) region, reflecting active and/or passive movements of E. pacifica. The average predation impact was maximal in the May/shallow assemblage (mean ± SE; 4.6 ± 1.4 kg wet wt km2 d−1) and was minimal in the November/shallow assemblage (0.4 ± 0.3). Annual estimates of consumption by demersal fish fishes ranged from 43 to 128 metric tons, representing 15 to 64% of the annual commercial catch of E. pacifica by local fisheries. It is therefore suggested that the fisheries on E. pacifica have the potential to considerably impact the demersal fish assemblages. Received: 3 December 1997 / Accepted: 10 June 1998  相似文献   

11.
The swimming behaviour of newly hatched turbot (Scophthalmus maximus L.) larvae was observed in artificial seawater (ASW) and in solutions of 21 l-amino acids at a concentration of 10−5M. The behaviour of 20 larvae was analysed in each solution. Each larva was observed for 1 min. Individual movements were recorded on video and analysed using a computer-assisted program. The larvae swam in convoluted, randomised three-dimensional paths, rested and started swimming again. There were large variations in the swimming behaviour of turbot larvae during ontogeny. In ASW the mean frequency of trajectories longer than a body length of 4 mm larva−1 min−1 increased from 1.2 at Day 1, to 10 at Day 4. Analysing the data (Dunnett's method) revealed that the frequency of swimming trajectories increased in the presence of glycine, histidine and glutamine, and decreased in the presence of proline. The total distance swum increased for glycine but decreased for proline. The threshold concentration for glycine detected by turbot larvae was 10−5M. The straightness index did not change in the presence of the amino acids. The possible role of these changes in behaviour is discussed. Received: 12 June 1997 / Accepted: 13 January 1998  相似文献   

12.
 To determine how fertilisation varied with sperm concentration for two species of scallop, Chlamys (Equichlamys) bifrons (Lamarck) and C. asperrima (Lamarck), we performed a simple series of sperm dilution experiments, and measured egg size and sperm swimming speeds. C. bifrons eggs were much larger (average diam=116.5 μm), and sperm swimming speeds faster (209.8 μm s−1), than C. asperrima (71.2 μm, 166.0 μm s−1). In both species, maximum fertilisation occurred at an ambient sperm concentration of around 100 sperm μl−1; the maximum proportion of eggs fertilised was less than 0.70 in the C. bifrons experiments, but nearer 1.0 with C. asperrima. At high sperm concentrations (>100 sperm μl−1), fertilisation decreased (presumably due to polyspermy) with increasing sperm concentration, but decreased more rapidly in C. bifrons than C. asperrima. A polyspermy-adjusted fertilisation kinetics model could be fitted to the experimental data, but unique parameter estimates could not be determined. Received: 7 October 1999 / Accepted: 8 July 2000  相似文献   

13.
 We found blood from bigeye tuna (Thunnus obesus) to have a significantly higher O2 affinity than blood from other tunas. Its P50 (partial pressure of oxygen, PO2 required to reach 50% saturation) was 1.6 to 2.0 kPa (12 to 15 mmHg) when equilibrated with 0.5% CO2. Previous studies employing similar methodologies found blood from yellowfin tuna (T. albacares), skipjack tuna (Katsuwonus pelamis), and kawakawa (Euthynnus affinis) to have a P50 of 2.8 to 3.1 kPa (21 to 23 mmHg). These observations suggest that bigeye tuna are more tolerant of low ambient oxygen than other tuna species, and support similar conclusions derived from laboratory whole-animal studies, depth-of-capture data, and directly-recorded vertical movements of fish in the open ocean. We also found the O2 affinity of bigeye tuna blood to be essentially unaffected by a 10 C° open-system temperature change (as is the blood of all tuna species studied to date). The O2 affinity of bigeye tuna blood was, however, more affected by a 10 C° closed-system temperature change than the blood of any tuna species yet examined. In other words, bigeye tuna blood displayed a significantly enhanced Bohr effect (change in log P50 per unit change in plasma pH at P50) when subjected to the inevitable changes in partial pressure of carbon dioxide (PCO2) and plasma pH that accompany closed-system temperature shifts, than when subjected to changes in plasma pH accomplished by changing PCO2 alone. In vivo, the resultant large decrease in O2 affinity (i.e. the increase in P50) that occurs as the blood of bigeye tuna is warmed during its passage through the vascular counter-current heat exchangers ensures adequate rates of O2 off-loading in the swimming muscles of this high-energy-demand teleost. Received: 12 March 1999 / Accepted: 18 December 1999  相似文献   

14.
Sixty-eight yellowfin tuna, Thunnus albacares, (60-135 cm fork length) were caught and released with implanted archival tags offshore off Baja California, Mexico, during October 2002 and October 2003. Thirty-six fish (53%) were recaptured and the data were downloaded from all 36 recovered tags. Time at liberty ranged from 9 to 1,161 days, and the data were analyzed for the 20 fish that were at liberty for 154 or more days. The accuracy in the position estimates, derived from light-level longitude data and sea-surface temperatures (SSTs) based latitude, is about 0.41° in longitude and 0.82° in latitude, in this region. The movement paths, derived from position estimates, for the 20 yellowfin indicated that 19 (95%) remained within 1,445 km of their release locations. The estimated mean velocity along movement paths was 77 km/day. The southern and northern seasonal movement paths observed for yellowfin off Baja California are influenced by the seasonal movements of the 18°C SST isotherm. Cyclical movements to and from suitable spawning habitat (≥24°C SST) was observed only for mature fish. For the 12 fish that demonstrated site fidelity, the mean 95 and 50% utilization distributions were 258,730 km2 and 41,260 km2, respectively. Evaluations of the timed depth records resulted in discrimination of four distinct behaviors. When exhibiting type-1 diving behavior (78.1% of all days at liberty) the fish remained at depths less than 50 m at night and did not dive to depths greater than about 100 m during the day. Type-2 diving behavior (21.2% of all days at liberty) was characterized by ten or more dives in excess of 150 m during the day. Type-2 diving behavior is apparently a foraging strategy for fish targeting prey organisms of the deep-scattering layer during the day, following nighttime foraging within the mixed layer on the same prey. Yellowfin tuna exhibited occasional deep-diving behavior, and some dives exceeded 1,000 m, where ambient temperatures were less than 5°C. Surface-oriented behavior, defined as the time fish remained at depths less than 10 m for more than 10 min, were evaluated. The mean number and duration of surface-oriented events per day for all fish was 14.3 and 28.5 min, respectively. Habitat utilization of yellowfin, presented as monthly composite horizontal and vertical distributions, indicates confined geographical distributions, apparently resulting from an affinity to an area of high prey availability. The vertical distributions indicate greater daytime depths in relation to a seasonally deeper mixed layer and a greater proportion of daytime at shallower depths in relation to a seasonally shallower mixed layer.  相似文献   

15.
M. Thiel 《Marine Biology》1998,132(2):209-221
The suspension-feeding amphipod Dyopedos monacanthus (Metzger, 1875) is a common epibenthic amphipod that lives on self-constructed “mud whips” (built from filamentous algae, detritus and sediment particles) in estuaries of the northern North Atlantic Ocean. The population biology of D. monacanthus at a shallow subtidal site in the Damariscotta River Estuary (Maine, USA) was examined between July 1995 and July 1997. The resident population at the study site was dominated by adult females during most months of the year. High percentages of subadults were found in late summer/early fall. Often, between 10 and 20% of the adult females were paired with males, and the percentage of ovigerous females varied between 40 and 100%, indicating continuous reproduction. The percentage of parental females varied between 40 and 80% during most months, but dropped to levels below 20% during summer/early fall. The average size of amphipods on their own mud whips was ∼4 mm during the summer/early fall, after which it increased continuously to >7.0 mm in March or April, and then dropped again. In March and April, the average number of eggs and juveniles female−1 was ∼100 eggs and 55 juveniles, while during the summer/early fall the average number of eggs female−1 was <20 and that of juveniles female−1 was <10. Many juveniles grew to large sizes (>1.4 mm) on their mothers' whips in winter/early spring but not in the summer/fall. The average number of amphipods at the study site was low in late summer/early fall (<50 individuals m−2), increased steadily during the winter, and reached peak densities of >3000 individuals m−2 in April 1996 (>1600 individuals m−2 in May 1997), after which densities decreased again. The decrease of the D.␣monacanthus population at the study site coincided with a strong increase of amphipods found pelagic in the water column. This behavioural shift occurred when temperatures increased and benthic predators became more abundant and active on shallow soft-bottoms, suggesting that D. monacanthus at the study site is strongly affected by predation. The effects are direct (by predation on amphipods) and indirect (by reducing duration of extended parental care and enhancing pelagic movements). Both extended parental care and pelagic movements are important behavioural traits of D.␣monacanthus (and other marine amphipods), and significantly affect its population dynamics. Received: 18 January 1998 / Accepted: 27 May 1998  相似文献   

16.
We hypothesize that the morpho-physiological adaptations that permit tunas to achieve maximum metabolic rates (MMR) that are more than double those of other active fishes should result in high water and ion flux rates across the gills and concomitant high osmoregulatory costs. The high standard metabolic rates (SMR) of tunas and dolphin fish may, therefore, be due to the elevated rates of energy expenditure for osmoregulation (i.e. teleosts capable of achieving exceptionally high MMR necessarily have SMR). Previous investigators have suggested a link between activity patterns and osmoregulatory costs based on Na+-K+ ATPase activity in the gills of active epipelagic and sluggish deep-sea fishes. Based on these observations, we conclude that high-energy-demand fishes (i.e. tunas and dolphin fish) should have exceptionally elevated gill and intestinal Na+-K+ ATPase activity reflecting their elevated rates of salt and water transfer. To test this idea and estimate osmoregulatory costs, we measured Na+-K+ ATPase activity (V max) in homogenates of frozen samples taken from the gills and intestines of skipjack and yellowfin tunas, and the gills of dolphin fish. As a check of our procedures, we made similar measurements using tissues from hybrid red tilapia (Oreochromis mossambicus ×O. niloticus). Contrary to our supposition, we found no difference in Na+-K+ ATPase activity per unit mass of gill or intestine in these four species. We estimate the cost of osmoregulation to be at most 9% and 13% of the SMR in skipjack tuna and yellowfin tuna, respectively. Our results, therefore, do not support either of our original suppositions, and the cause(s) underlying the high SMR of tunas and dolphin fish remain unexplained. Received: 7 September 2000 / Accepted: 4 December 2000  相似文献   

17.
 The European fanworm Sabella spallanzanii (Gmelin, 1791) was recently introduced to Port Phillip Bay and is now a conspicuous component of most benthic communities. Reproduction of the worm was investigated in a population at Queenscliff over a 2 yr period (October 1995 to October 1997) using gonadal histology. The worms are dioecious (sex ratio 1:1, n=250), and attained sexual maturity at ∼50 mm body length. Reproductive periodicity followed a distinct annual cycle, and spawning proceeded through an extended autumn/winter period. Spawning was broadly synchronous between sexes, and coincided with falling seawater temperatures and shorter day-lengths. The females were highly fecund, and >50 000 eggs were probably shed from large females (>300 mm body length) during the annual spawning period. Breeding cycles of S. spallanzanii in Port Phillip Bay are ∼6 mo out of phase with endemic populations located at similar latitudes in the northern hemisphere. The spread of S. spallanzanii within Port Phillip Bay has been monitored by divers on an annual basis since 1994. The most recent dive survey (1998) indicates that S. spallanzanii has extended its range through out the entire 2000 km2 embayment, and has invaded most subtidal habitats. Quantitative estimates of S. spallanzanii abundances were highest on pier pylons (12.5 individuals m−2, 0.5 to 7 m depths). On sediments, estimates were highest at shallow sites (0.3 m−2, 7 m depth), but numbers declined significantly with depth (0.1 m−2, 17 to 22 m depth). Mean worm lengths and biomass were, by contrast, significantly higher at intermediate depths (12 to 17 m) than in shallower (7 m) or deeper (22 m) locations. S. spallanzanii demonstrates a clear preference for growth in sheltered, nutrient-enriched waters, so it may not spread from Port Phillip Bay into the adjacent oceanic waters of Bass Strait; however, in view of S. spallanzanii's current high abundance, fecundity and extended spawning periodicity, there is a high risk of future range expansions, mediated by shipping, into other temperate-water ports. Received: 17 November 1998 / Accepted: 6 January 2000  相似文献   

18.
E. Mutlu  F. Bingel 《Marine Biology》1999,135(4):589-601
The distribution of Pleurobrachia pileus Müller, 1776 in the Black Sea was determined using plankton samples collected above the anoxic zone (maximum of 200 m) in the winter, spring, and summer of 1991 to 1995. The summer samples were collected in 1991 to 1993 (for a previous) and are included in this paper for comparative purposes. High concentrations of P. pileus were found at the northern edges of anticyclonic eddies along the southern coastal regions. The biomass and abundance of P. pileus increased from winter through spring to a peak in summer. The highest mean wet weight during a sampling period was 250 g m−2, while the maximum wet weight was 1429 g m−2. P. pileus was mostly found in a layer extending from the lower parts of the thermocline down to the anoxic zone, where the temperature was <8 °C. The vertical distribution of P. pileus biomass had two clear maxima at night: an upper maximum at 20 to 40 m was less pronounced than the lower maximum at 90 to 120 m depth. Mean body length of P. pileus did not exceed 12 mm. Smaller individuals (9 to 10 mm length) occurred in winter. P. pileus had two length classes in early spring (March 1995) and late summer (August 1993), indicating the presence of both newly hatched and larger individuals. Overall, the stomach contents of P. pileus consisted mainly of Copepoda (90%), Cladocera (1%), Mollusca (1%), fish eggs and larvae (1%), and other taxa (7%). The preferred food of P. pileus (frequency of occurrence) was: Calanus euxinus (39%), Pseudocalanus elongatus (30%), Acartia clausi (28%), Oithona similis (2%), and Paracalanus parvus (1%). The endoparasite Hysterothylacium aduncum was commonly found in P. pileus. Abundances of Mnemiopsis leidyi and P. pileus were either negatively correlated (r = −0.5 to −0.7) or positively correlated at a low significance level (r = 0.25 to 0.3) with abundance of A. clausi in different months of the year. Aurelia aurita abundance was correlated mainly with the abundance of C. euxinus from June 1991 to March/April 1995. Over the same period the abundance of P. pileus was significantly correlated with the abundance of P. elongatus, an important prey species. Received: 1 November 1997 / Accepted: 30 August 1999  相似文献   

19.
We analysed growth of the Antarctic bryozoan Melicerita obliqua (Thornely, 1924) by x-ray photography and stable isotope analysis. M. obliqua colonies form one segment per year, thus attaining maximum length of about 200 mm within 50 years. In the Weddell and Lazarev Seas, annual production/biomass ratio of M. obliqua is 0.1 yr−1, which is in the range of other Antarctic benthic invertebrate populations. Production amounts to 3.34 mg Corg m−2 yr−1 and 90.6 mg ash m−2 yr−1 on the shelf (100 to 600 m water depth), and to 0.13 mg Corg m−2 yr−1 and 36.8 mg ash m−2 yr−1 on the slope (600 to 1250 m water depth). Received: 27 February 1998 / Accepted: 8 May 1998  相似文献   

20.
Muscle tissue was collected for stable isotope analysis (SIA) from the main fish predators and their fish and cephalopod prey from oceanic waters off eastern Australia between 2004 and 2006. SIA of δ15N and δ13C revealed that the species examined could be divided into three main trophic groups. A “top predator” group consisted mainly of large billfish (Xiphias gladius and Tetrapturus audax), yellowfin (Thunnus albacares), bigeye (T. obesus) and southern bluefin (T. maccoyii) tunas and sharks; with mako (Isurus oxyrinchus) the highest. Below this tier was a second group composed of mid-trophic level fishes including albacore tuna (Thunnus alalunga), lancet fish (Alepisaurus ferox), mahi mahi (Coryphaena hippuris) and ommastrephid squid. Underlying both groups was a grouping of small fishes including myctophids, small scombrids and nomeids as well as surface fishes including macrorhamphosids. These groupings were based largely on mean animal size which showed a positive linear relation to δ15N (r 2 = 0.58). Some species showed significant ontogenetic variation in either δ15N (swordfish, lancet fish, yellowfin and albacore tuna) or δ13C (mako shark). We also noted a consistent latitudinal change in δ15N and δ13C at ~28°S for the top predator species, particularly albacore and yellowfin tuna. The differences were consistent with a change from oligotrophic Coral Sea to nutrient rich Tasman Sea waters. These differences suggest that predatory fishes may have extended residence time in distinct regions off eastern Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号