首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
复合人工湿地系统对生活污水的净化效果   总被引:1,自引:0,他引:1  
将垂直流人工湿地与水平流人工湿地组成复合人工湿地系统,研究了此复合系统对化粪池出水的净化效果。结果表明,当水平流人工湿地的水力停留时间为3d天时,复合系统对COD、BOD5、TP的去除率分别达到73%、66%、87%,并通过垂直流湿地的硝化作用及水平流湿地的反硝化作用,复合系统对TN的去除率达到40%以上。  相似文献   

2.
         下载免费PDF全文
The combination of intercropping and phytoremediation in the remediation of cadmium contaminated soil is an emerging model in recent years, but the results of previous studies are inconsistent. In the field experiment, eggplant was intercropped with hyperaccumulator Sedum alfredii Hance (inoculated or not inoculated with endophytic bacteria) to study the effects of intercropping on vegetable safety production, phytoremediation efficiency of hyperaccumulator and variation of soil available nutrients. The results showed that the intercropping treatment had a negative effect on the growth of eggplant and Sedum, but endophyte SaMR12 alleviated the inhibition of intercropping on plant growth. Intercropping treatment increases the Cd concentration in edible part of eggplant to 1.34 mg/kg compared with eggplant monoculture (1.19 mg/kg). While the application of SaMR12 reduces the Cd concentration of eggplant fruit to 0.95 mg/kg and significantly promotes the Cd uptake by Sedum. What's more surprising is that compared with eggplant monocropping, the content of soil available nitrogen, phosphorus and potassium in the treatment of intercropping with inoculated Sedum increased significantly. And according to the correlation analysis of various indexes of plants and soil, the Cd content of eggplant is negatively correlated with the available phosphorus and potassium in the soil, while the Cd content of Sedum is positively correlated with it, which suggested that the application of phosphorus and potassium fertilizers in this experimental site was beneficial to reduce Cd content in eggplant and improve Cd phytoextraction of Sedum. Therefore, in the daily production of moderately Cd-contaminated soil, intercropping eggplant with Sedum inoculated with endophytic bacteria is an excellent Phytoextraction Coupled with Agro-safe-production (PCA) pattern.  相似文献   

3.
    
Microalgae and cyanobacteria are fundamental components of aquatic ecosystems. Pollution in aquatic environment is a worldwide problem. Toxicological research on microalgae and cyanobacteria can help to establish a solid foundation for aquatic ecotoxicological assessments. Algae and cyanobacteria occupy a large proportion of the biomass in aquatic environments; thus, their toxicological responses have been investigated extensively. However, the depth of toxic mechanisms and breadth of toxicological investigations need to be improved. While existing pollutants are being discharged into the environment daily, new ones are also being produced continuously. As a result, the phenomenon of water pollution has become unprecedentedly complex. In this review, we summarize the latest findings on five kinds of aquatic pollutants, namely, metals, nanomaterials, pesticides, pharmaceutical and personal care products (PPCPs), and persistent organic pollutants (POPs). Further, we present information on emerging pollutants such as graphene, microplastics, and ionic liquids. Efforts in studying the toxicological effects of pollutants on microalgae and cyanobacteria must be increased in order to better predict the potential risks posed by these materials to aquatic ecosystems as well as human health.  相似文献   

4.
    
Algal phytoremediation represents a practical green solution for treating anaerobically digested piggery effluent(ADPE). The potential and viability of combining microalgae and macroalgae cultivation for the efficient treatment of ADPE were evaluated in this study.Bioprospecting the ability of different locally isolated macroalgae species illustrated the potential of Cladophora sp. to successfully grow and treat ADPE with up to 150 mg/L NH_4~+ with a biomass productivity of(0.13 ± 0.02) g/(L·day) and ammonium removal rate of(10.23 ± 0.18) mg/(L·day) NH_4~+. When grown by itself, the microalgae consortium used in this study consisting of Chlorella sp. and Scenedesmus sp. was found to grow and treat undiluted ADPE(up to 525 mg/L NH_4~+) with an average ammonium removal rate of 25 mg/(L·day) NH_4~+ and biomass productivity of(0.012 ± 0.0001) g/(L·day). Nevertheless, when combined together, despite the different cultivation systems(attached and non-attached) evaluated,microalgae and macroalgae were unable to co-exist together and treat ADPE as their respective growth were inversely related to each other due to direct competition for nutrients and available resources as well as the negative physical interaction between both algal groups.  相似文献   

5.
    
As an aliphatic amino acid, cysteine (CYS) is diffuse in the living cells of plants and animals. However, little is known of its role in the reactivity of nano-sized zero-valent iron (NZVI) in the degradation of pollutants. This study shows that the introduction of CYS to the NZVI system can help improve the efficiency of reduction, with 30% more efficient degradation and a reaction rate constant nine times higher when nitrobenzene (NB) is used as probe compound. The rates of degradation of NB were positively correlated with the range of concentrations of CYS from 0 to 10 mmol/L. The introduction of CYS increased the maximum concentration of Fe(III) by 12 times and that of Fe(II) by four times in this system. A comparison of systems featuring only CYS or Fe(II) showed that the direct reduction of NB was not the main factor influencing its CYS-stimulated removal. The reduction in the concentration of CYS was accompanied by the generation of cystine (CY, the oxidized form of cysteine), and both eventually became stable. The introduction of CY also enhanced NB degradation due to NZVI, accompanied by the regeneration of CYS. This supports the claim that CYS can accelerate electron transfer from NZVI to NB, thus enhancing the efficiency of degradation of NB.  相似文献   

6.
    
Dissolved organic matter (DOM) is an important constituent of wastewater treatment plant (WWTP) effluent. A novel combined tidal and subsurface flow constructed wetland (TF-SSF-CW) of 90 L was constructed for a ten-month trial of advanced treatment of the WWTP effluent. Excitation emission matrix (EEM) fluorescence spectroscopy, parallel factor (PARAFAC) analysis and a two end-member mixing model were employed to characterize the composition and removal process of the effluent DOM (EfOM) from the WWTP. The results showed that the TF-SSF-CW performed an efficient EfOM removal with dissolved organic carbon (DOC) removal rate of 88% and dissolved organic nitrogen (DON) removal rate of 91%. Further analysis demonstrated that the EfOM consisted mainly of two protein moieties and two humic-like groups; protein moieties (76%) constituted the main content of EfOM in raw water and humic-like groups (57%) became the dominating contributor after treatment. The EfOM from the WWTP was mainly of aquatic bacterial origin and evolved to a higher proportion of terrigenous origin with higher humification in the TF-SSF-CW effluent. A common controlling treatment-related factor for determining the concentrations of the same kind of substances (protein groups or humic-like groups) was revealed to exist, and the ratio of removal rates between the same substances in treatment was calculated. Our study demonstrates that the TF-SSF-CW can be a novel and effective treatment method for the EfOM from WWTPs, and is helpful for understanding of the character of EfOM in wetland treatment.  相似文献   

7.
    
Wetlands are one of the important natural sources of atmospheric methane (CH4), as an important part of wetlands, floating plants can be expected to affect methane release. However, the effects of floating plants on methane release are limited. In this study, methane fluxes, physiochemical properties of the overlying water, methane oxidation potential and rhizospheric bacterial community were investigated in simulated wetlands with floating plants Eichhornia crassipes, Hydrocharis dubia, and Trapa natans. We found that E. crassipes, H. dubia, and T. natans plants could inhibit 84.31% - 97.31%, 4.98% - 88.91% and 43.62% - 92.51% of methane fluxes at interface of water-atmosphere compared to Control, respectively. Methane fluxes were negatively related to nutrients concentration in water column but positively related to the aerenchyma proportions of roots, stems, and leaves. At the same biomass, root of E. crassipes (36.44%) had the highest methane oxidation potential, followed by H. dubia (12.99%) and T. natans (11.23%). Forty-five bacterial phyla in total were identified on roots of three plants and 7 bacterial genera (2.10% - 3.33%) were known methanotrophs. Type I methanotrophs accounted for 95.07% of total methanotrophs. The pmoA gene abundances ranged from 1.90 × 1016 to 2.30 × 1018 copies/g fresh weight of root biofilms. Abundances of pmoA gene was significantly positively correlated with environmental parameters. Methylotrophy (5.40%) and methanotrophy (3.75%) function were closely related to methane oxidation. This study highlights that floating plant restoration can purify water and promote carbon neutrality partially by reducing methane fluxes through methane oxidation in wetlands.  相似文献   

8.
    
Phytoremediation is a sustainable remedial approach for removing benzene from environment. Plant associated bacteria could ameliorate the phytotoxic effects of benzene on plant, although the specificity of these interactions is unclear. Here, we used proteomics approach to gain a better understanding of the mechanisms involved in plant-bacteria interactions. Plant associated bacteria was isolated and subsequently inoculated into the sterilized Helianthus annuus, and the uptake rates of benzene b...  相似文献   

9.
    
An effective broad-spectrum fungicide, azoxystrobin(AZ), has been widely detected in aquatic ecosystems, potentially affecting the growth of aquatic microorganisms. In the present study, the eukaryotic alga Monoraphidium sp. and the cyanobacterium Pseudanabaena sp. were exposed to AZ for 7 days. Our results showed that 0.2–0.5 mg/L concentrations of AZ slightly inhibited the growth of Monoraphidium sp. but stimulated Pseudanabaena sp. growth. Meanwhile, AZ treatment effectively increased the sec...  相似文献   

10.
    
In this study, the biochar (BC) produced from sawdust, sludge, reed and walnut were used to support sulfidation of nano-zero-valent-iron (S-nZVI) to enhance nitrate (NO3-N) removal and investigate the impact on greenhouse gas emissions. Batch experiment results showed the S-nZVI/BCsawdust (2:1, 500), S-nZVI/BCsludge (2:1, 900), S-nZVI/BCreed (2:1, 700), and S-nZVI/BC walnut (2:1, 700) respectively improved NO3-N removal efficiencies by 22%, 20%, 3% and 0.1%, and the selectivity toward N2 by 22%, 25%, 22% and 18%. S-nZVI uniformly loaded on BC provided electrons for the conversion of NO3-N to N2 through Fe0. At the same time, FeSx layer was formed on the outer layer of ZVI in the sulfidation process to prevent iron oxidation, so as to improve the electrons utilization efficiency After adding four kinds of S-nZVI/BC into constructed wetlands (CWs), the NO3-N removal efficiencies could reach 100% and the N2O emission fluxes were reduced by 24.17%-36.63%. And the average removal efficiencies of TN, COD, TP were increased by 21.9%, -16.5%, 44.3%, repectively. The increasing relative abundances of denitrifying bacteria, such as Comamonas and Simplicispira, suggested that S-nZVI/BC could also improve the process of microbial denitrification. In addition, different S-nZVI/BC had different effects on denitrification functional genes (narG, nirk, nirS and nosZ genes), methanotrophs (pmoA) and methanogenesis (mcrA). This research provided an effective method to improve NO3-N removal and reduce N2O emission in CWs.  相似文献   

11.
    
Adenosine triphosphate(ATP) generation of aquatic organisms is often subject to nanoparticles(NPs) stress, involving extensive reprogramming of gene expression and changes in enzyme activity accompanied by metabolic disturbances. However, little is known about the mechanism of energy supply by ATP to regulate the metabolism of aquatic organisms under NPs stress. Here, we selected extensively existing silver nanoparticles(AgNPs) to investigate their implications on ATP generation and relevant met...  相似文献   

12.
         下载免费PDF全文
Environmental fate and ecological impacts of fipronil and its transformation products (FIPs) in aquatic environment have caused worldwide attention, however, the influence of dissolved organic carbon (DOC) on multimedia distribution, bioavailability, and toxicity of FIPs in field waterways was largely unknown. Here, we collected 11 companion water and sediment samples along a lotic stream in Guangzhou, South China. FIPs were ubiquitous with total water concentrations ranging from 1.22 to 43.2 ng/L (14.8 ± 12.9 ng/L) and fipronil sulfone was predominant in both water and sediment. More than 70% of FIPs in aqueous phase were bound to DOC and the KDOC values of FIPs were approximately 1–2 orders of magnitude higher than Kd-s/KOC, emphasizing the significance of DOC in phase partitioning and transport of FIPs in aquatic environment. Water and sediment samples were more toxic to Chironomus dilutus than Hyallela azteca, and FIPs (especially fipronil sulfone) pronouncedly contributed toxicity to C. dilutus. Toxic units (TU) based on freely dissolved concentrations in water determined by solid phase microextraction significantly improved toxicity estimation of FIPs to the invertebrates compared to TUs based on aqueous concentrations. The present study highlights the significance of DOC association on fate and ecological risk of hydrophobic insecticides in lotic ecosystem.  相似文献   

13.
         下载免费PDF全文
The ongoing contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) has resulted in a global and rapidly growing interest in PFAS groundwater remediation. Preferred technologies that lead to PFAS destruction are often limited by not addressing all PFAS, being energy-intensive or not being suited for in-situ application. We developed nNiFe-activated carbon (AC) nanocomposites and demonstrated varying degrees of PFAS reduction and fluoride generation with these nanocomposites in batch reactors for several PFAS. Here we explore nNiFe-AC's effectiveness to transform perfluoroalkyl acid acids (PFAAs) under steady-state flow (0.0044 to 0.15 mL/min) in nNiFe-AC:sand packed columns. Column experiments included, two perfluorooctane sulfonate (PFOS) in deionized water and two PFAA mixtures in deionized water or bicarbonate buffer containing five perfluoroalkyl carboxylates (PFCAs, C5-C9) and three perfluoroalkyl sulfonates (PFSAs, C4, C6 and C8) at temperatures of 50 or 60°C were evaluated. PFOS transformation was similar in PFOS-only and PFAA mixture column experiments. Overall, % PFAA transformation under flow conditions exceeded what we observed previously in batch reactors with up to 53% transformation of a PFAA mixture with ∼ 8% defluorination. Longer chain PFAS dominated the PFAAs transformed and a bicarbonate matrix appeared to reduce overall transformation. PFAA breakthrough was slower than predicted from only sorption due to transformation; some longer chain PFAS like PFOS did not breakthrough. Here, nNiFe-AC technology with both in-situ and ex-situ potential application was shown to be a plausible part of a treatment train needed to address the ongoing challenge for cleaning up PFAS-contaminated waters.  相似文献   

14.
综述了现今国内外人工湿地污水处理系统堵塞的成因,分析了目前比较通用的预防手段、恢复措施和研究现状,并提出了今后人工湿地防淤堵技术的研究发展方向.  相似文献   

15.
    
The reference method to quantify mixing ratios of the criteria air pollutant nitrogen dioxide (NO2) is NO-O3 chemiluminescence (CL), in which mixing ratios of nitric oxide (NO) are measured by sampling ambient air directly, and mixing ratios of NOx (= sum of NO and NO2) are measured by converting NO2 to NO using, for example, heated molybdenum catalyst or, more selectively, photolytic conversion (P-CL). In this work, the nitrous acid (HONO) interference in the measurement of NO2 by P-CL was investigated. Results with two photolytic NO2 converters are presented. The first used radiation centered at 395 nm, a wavelength region commonly utilized in P-CL. The second used light at 415 nm, where the overlap with the HONO absorption spectrum and hence its photolysis rate are less. Mixing ratios of NO2, NOx and HONO entering and exiting the converters were quantified by Thermal Dissociation Cavity Ring-down Spectroscopy (TD-CRDS). Both converters exhibited high NO2 conversion efficiency (CFNO2; > 90%) and partial conversion of HONO. Plots of CF against flow rate were consistent with photolysis frequencies of 4.2 s-1 and 2.9 s-1 for NO2 and 0.25 s-1 and 0.10 s?1 for HONO at 395 nm and 415 nm, respectively. CFHONO was larger than predicted from the overlap of the emission and HONO absorption spectra. The results imply that measurements of NO2 by P-CL marginally but systematically overestimate true NO2 concentrations, and that this interference should be considered in environments with high HONO:NO2 ratios such as the marine boundary layer or in biomass burning plumes.  相似文献   

16.
         下载免费PDF全文
Studies in recent years have shown that aquatic pollution by microplastics (MPs) can be considered to pose additional stress to amphibian populations. However, our knowledge of how MPs affect amphibians is very rudimentary, and even more limited is our understanding of their effects in combination with other emerging pollutants. Thus, we aimed to evaluate the possible toxicity of polyethylene MPs (PE-MPs) (alone or in combination with a mix of pollutants) on the health of Physalaemus cuvieri tadpoles. After 30 days of exposure, multiple biomarkers were measured, including morphological, biometric, and developmental indices, behavioral parameters, mutagenicity, cytotoxicity, antioxidant and cholinesterase responses, as well as the uptake and accumulation of PE-MPs in animals. Based on the results, there was no significant change in any of the parameters measured in tadpoles exposed to treatments, but induced stress was observed in tadpoles exposed to PE-MPs combined with the mixture of pollutants, reflecting significant changes in physiological and biochemical responses. Through principal component analysis (PCA) and integrated biomarker response (IBR) assessment, effects induced by pollutants in each test group were distinguished, confirming that the exposure of P. cuvieri tadpoles to the PE-MPs in combination with a mix of emerging pollutants induces an enhanced stress response, although the uptake and accumulation of PE-MPs in these animals was reduced. Thus, our study provides new insight into the danger to amphibians of MPs coexisting with other pollutants in aquatic environments.  相似文献   

17.
    
Silver nanoparticles(AgNPs) have been widely used in many fields,which raised concerns about potential threats to biological sewage treatment systems.In this study,the phosphorus removal performance,enzymatic activity and microbial population dynamics in constructed wetlands(CWs) were evaluated under a long-term exposure to Ag NPs(0,50,and 200 μg/L) for 450 days.Results have shown that Ag NPs inhibited the phosphorus removal efficiency in a short-term exposure,whereas caused no obviously negativ...  相似文献   

18.
Hexavalent chromium(Cr(Ⅵ)) is a toxic element that has negative impacts on crop growth and yield. Using plant extracts to convert toxic Cr(Ⅵ) into less toxic Cr(Ⅲ) may be a more favorable option compared to chemical reducing agents. In this study, the potential effects and mechanisms of using an aqueous extract of Psidium guajava L. leaves(AEP) in reducing Cr(Ⅵ)toxicity in rice were comprehensively studied. Firstly, the reducing power of AEP for Cr(Ⅵ)was confirmed by the cyclic voltammetry combi...  相似文献   

19.
    
An embedded reservoir that provides an efficient nutrient removal system protects drinking water.However,embedded reservoirs are rarely used in eutrophic shallow lakes because of their undetermined nutrient retention efficiency and unknown effects by the phytoplankton community.In this study,we aim to investigate the nutrient retention and algae succession in an embedded reservoir and adjacent wetland from April 2017 to September 2018 in the eastern part of Lake Taihu,China.More than 40% of tota...  相似文献   

20.
    
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号