首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
Chemical exposure can indirectly affect leaf microbiota communities, but the mechanism driving this phenomenon remains largely unknown. Results revealed that the co-exposure of glyphosate and multi-carbon nanotubes (CNTs) caused a synergistic inhibitory effect on the growth and metabolism of Arabidopsis thaliana shoots. However, only a slight inhibitory effect was induced by nanotubes or glyphosate alone at the tested concentrations. Several intermediate metabolites of nitrogen metabolism and fatty acid synthesis pathways were upregulated under the combined treatment, which increased the amount of energy required to alleviate the disruption caused by the combined treatment. Additionally, compared with the two individual treatments, the glyphosate/nanotube combination treatment induced greater fluctuations in the phyllosphere bacterial community members with low abundance (relative abundance (RA) <1%) at both the family and genus levels, and among these bacteria some plant growth promotion and nutrient supplement related bacteria were markable increased. Strikingly, strong correlations between phyllosphere bacterial diversity and metabolites suggested a potential role of leaf metabolism, particularly nitrogen and carbohydrate metabolism, in restricting the range of leaf microbial taxa. These correlations between phyllosphere bacterial diversity and leaf metabolism will improve our understanding of plant-microbe interactions and the extent of their drivers of variation and the underlying causes of variability in bacterial community composition.  相似文献   

2.
Imazethapyr (IM) is an acetolactate synthase (ALS)-inhibiting herbicide that has been widely used in recent years. However, IM spraying can lead to the accumulation of herbicide residues in leaves. Here, we determined the effects of IM spraying on the plant growth and leaf surface microbial communities of Arabidopsis thaliana after 7 and 14?days of exposure. The results suggested that IM spraying inhibited plant growth. Fresh weight decreased to 48% and 26% of the control value after 7 and 14?days, respectively, of 0.035?kg/ha IM exposure. In addition, anthocyanin content increased 9.2-fold and 37.2-fold relative to the control content after 7 and 14?days of treatment, respectively. Furthermore, IM spraying destroyed the cell structures of the leaves, as evidenced by increases in the number of starch granules and the stomatal closure rate. Reductions in photosynthetic efficiency and antioxidant enzyme activity were observed after IM spraying, especially after 14?days of exposure. The diversity and evenness of the leaf microbiota were not affected by IM treatment, but the composition of community structure at the genus level was altered by IM spraying. Imazethapyr application increased the abundance of Pseudomonas, a genus that includes species pathogenic to plants and humans, indicating that IM potentially increased the abundance of pathogenic bacteria on leaves. Our findings increase our understanding of the relationships between herbicide application and the microbial community structures on plant leaves, and they provide a new perspective for studying the ecological safety of herbicide usage.  相似文献   

3.
Numerous studies have evaluated the toxicity and endocrine disrupting properties of organic UV filters for aquatic organisms, but little is known about their biodegradation in river sediments and their impact on microorganisms. We have set up the sterile and microbiological systems in the laboratory, adding 2-ethylhexyl-4-methoxycinnamate (EHMC), one of organic UV filters included in the list of high yield chemicals, at concentrations of 2, 20 and 200 μg/L, and characterized the microbial community composition and diversity in sediments. Monitoring of EHMC degradation within 30 days revealed that the half-life in the microbial system (3.49 days) was much shorter than that in the sterile system (7.55 days). Two potential degradation products, 4-mercaptobenzoic acid and 3-methoxyphenol were identified in the microbial system. Furthermore, high-throughput 16s and 18s rRNA gene sequencing showed that Proteobacteria dominated the sediment bacterial assemblages followed by Chloroflexi, Acidobacteria, Bacteroidetes and Nitrospirae; Eukaryota_uncultured fungus dominated the sediment fungal assemblages. Correlation analysis demonstrated that two bacterium genera (Anaerolineaceae_uncultured and Burkholderiaceae_uncultured) were significantly correlated with the biodegradation of EHMC. These results illustrate the biodegradability of EHMC in river sediments and its potential impact on microbial communities, which can provide useful information for eliminating the pollution of organic UV filters in natural river systems and assessing their potential ecological risks.  相似文献   

4.
Anaerobic digestion (AD) of swine manure (SM) commonly shows low biogas output and unsatisfactory economic performance. In this study, thermophilic AD (TAD, 50 ± 1 °C) was combined with thermal hydrolysis pretreatment (THP, 170 °C/10 bar), to investigate its potential for maximizing biogas yield, securing successful digestion and microbial diversity, as well as improving energy balance. Four lab-scale continuously stirred tank reactors were operated for 300 days and compared with each other, i.e., reactor 1 (raw SM fed in mesophilic AD: RSM-MAD), reactor 2 (THP-treated SM fed in MAD: TSM-MAD), reactor 3 (RSM-TAD), and reactor 4 (TSM-TAD). The results showed that THP was efficient to increase methane production of SM, TSM-TAD mode led to the highest methane yield (129.8 ± 40.5 mL-CH4/g-VS/day) among the tests (p < 0.05). Although TAD was more likely to induce free ammonia (> 700 mg/L) or volatile fatty acids (> 6000 mg/L) accumulation compared with MAD in start-up phase, TSM-TAD treatment mode behaved a sustainable digestion process in a long-term operation. For TSM-TAD scenario, higher Shannon–Weaver (3.873) and lower Simpson index (0.061) indicated this mode ensured and enlarged the diversity of bacteria communities. Phylum Bathyarchaeota was dominant (59.3%−90.0%) in archaea community, followed by Euryarchaeota in the four reactors. RSM-MAD treatment mode achieved the highest energy output (4.65 GJ/day), TSM-TAD was less effective (−17.38 GJ/day) due to increased energy demands. Thus improving the energetic efficiency of THP units is recommended for the development of TSM-TAD treatment mode.  相似文献   

5.
The decay and distribution of bacterial pathogens in water is an important information for the health risk assessment to guide water safety management, and suspended algae might affect bacterial pathogens in water. This study established microcosms to investigate the effects of algae-related factors on the representative indicators and opportunistic pathogen species in water. We found that suspended algae increased the persistence of targeted species by 1-2 orders of magnitude of concentrations ...  相似文献   

6.
The optimization of volume ratio (VAn/VA/VO) and nitrate recycling ratio (R) in a two-sludge denitrifying phosphorus removal (DPR) process of Anaerobic Anoxic Oxic-Moving Bed Biofilm Reactor (A2/O-MBBR) was investigated. The results showed that prolonged anaerobic retention time (HRTAn: 1.25→3.75 hr) exerted favorable effect on chemical oxygen demand (COD) removal (57.26%→73.54%), poly-β-hydroxyalkanoates (PHA) synthesis (105.70→138.12 mgCOD/L) and PO43? release (22.3→38.9 mg/L). However, anoxic retention time (HRTA) and R exhibited positive correlation with PHA utilization (43.87%-81.34%) and denitrifying phosphorus removal (DPR) potential (ΔNO3?/ΔPO43?: 0.57-1.34 mg/mg), leading to dramatical TN removal variations from 68.86% to 81.28%. Under the VAn/VA/VO ratio of 2:6:0, sludge loss deteriorated nutrient removals but the sludge bioactivity quickly recovered when the oxic zone was recovered. The sludge characteristic and microstructure gradually transformed under the dissolved oxygen (DO) control (1.0-1.5→1.5-2.0 mg/L), in terms of sludge volume index (SVI: 194→57 mL/gVSS), median-particle-size (D50: 99.6→300.5 μm), extracellular polymeric substances (EPS) (105.62→226.18 mg/g VSS) and proteins/polysaccharides (PN/PS) ratio (1.52→3.46). Fluorescence in situ hybridization (FISH) results showed that phosphorus accumulation organisms (PAOs) (mainly Cluster I of Accumulibacter, contribution ratio: 91.79%-94.10%) dominated the superior DPR performance, while glycogen accumulating organisms (GAOs) (mainly Competibacter, contribution ratio: 82.61%-86.89%) was responsible for deteriorative TN and PO43? removals. The optimal HRTA and R assembled around 5-6.5 hr and 300%-400% based on the PHA utilization and DRP performance, and the oxic zones also contributed to PO43? removal although it showed low dependence on DO concentration and oxic retention time (HRTO).  相似文献   

7.
In practice, pesticides are usually applied simultaneously or one after another for crop protection, and this type of pesticide application often leads to a combined contamination of pesticide residues in the soil environment. A laboratory study was conducted to investigate the influence of chlorothalonil on chlorpyrifos degradation and its effects on soil bacterial, fungal, and actinomycete populations. Under the experimental conditions here, the half-lives of chlorpyrifos alone, and in combination with chlorothalonil, at the recommended and double dosages, were measured to be 3.24, 2.77, and 2.63 d, respectively. Chlorpyrifos degradation was not significantly altered by its combination with chlorothalonil. However, the inhibitory effect of chlorpyrifos on soil microorganisms was increased by its combination with chlorothalonil, and the increase was related to the levels of chlorothalonil added. Compared to those in the controls, the populations of bacteria, fungi, and actinomycetes were significantly reduced by 44.1%, 61.1%, and 72.8%, respectively, on the first day after treatment (DAT) by chlorpyrifos alone. With the addition of chlorothalonil, the inhibition was increased to 55.2%, 79.3%, and 85.8% at the recommended dosage, and 86.0%, 94.1%, and 90.8% at the double dosage, at one DAT, respectively. The results suggested that combined effects should be taken into account to assess the actual impacts of pesticide applications.  相似文献   

8.
The large-scale development in livestock feed industry has increased the chances of antibiotics and heavy metals contamination in the soil. The fate of antibiotic resistance genes (ARGs) and microbial community in heavy metals and antibiotic contaminated soil is still unclear. In this study, we investigated the effect of cadmium (Cd) addition on the transport of ARGs, microbial community and human pathogenic bacteria in oxytetracycline (OTC) contaminated soil. Results showed that the addition of OTC significantly increased the abundance of ARGs and intI1 in the soil and lettuce tissues. The addition of Cd to OTC treated soil further increased the abundance and translocation of ARGs and intI1. Moreover, Cd promoted the transfer of potential human pathogenic bacteria (HPB) into lettuce tissues. Compared with O10 treatment, the addition of Cd decreased the concentration of OTC in soil and lettuce tissue, but slightly increased the fresh weight of lettuce tissues. Redundancy analysis indicated that bacterial community succession is a major factor in ARGs variation. Network analysis indicated that the main host bacteria of ARGs were mainly derived from Proteobacteria. Correlation analysis showed that intI1 was significantly correlated with tetG, tetC, sul1, sul2, ermX, and ermQ. Meanwhile, potential HPB (Clostridium, and Burkholderia) was significantly correlated with intI1 and eight ARGs (tetG, tetC, tetW, tetX, sul1, sul2, ermX, and ermQ.). The findings of this study suggest that the addition of heavy metals to agricultural fields must be considered in order to reduce the transfer of ARGs in the soil and crops.  相似文献   

9.
Over half of century, sanitary landfill was and is still the most economical treatment strategy for solid waste disposal, but the environmental risks associated with the leachate have brought attention of scientists for its proper treatment to avoid surface and ground water deterioration. Most of the treatment technologies are energy-negative and cost intensive processes, which are unable to meet current environmental regulations. There are continuous demands of alternatives concomitant with pos...  相似文献   

10.
In this study, a photocatalytic material consisting of ZnO and yttrium-doped ZnO (YZO) nanoparticles was obtained via a facile precipitation conducted under ambient pressure whereby crystalline ZnO was successfully doped with yttrium. YZO had a hexagonal wurtzite polycrystalline structure with smaller crystal and grain sizes than ZnO, which in turn meant larger specific surface area and pore volume. Chemical defects were also produced, which facilitated photocatalytic activity, because such defects can act as reaction centers. The optical band gap magnitude and the diamagnetic nature of YZO were also determined. The structural, crystalline, and chemical defects of YZO synergistically enhanced the photocatalytic degradation of carbaryl; indeed, the kinetic rate constant of this reaction catalyzed by YZO was 11.17 × 10−2 min−1 under natural sunlight irradiation, higher than the value measured for ZnO (8.68 × 10−2 min−1). Evidence thus indicates that yttrium-doping effectively modified some properties of ZnO nanoparticles so that YZO nanoparticles proved a suitable photocatalytic material for carbaryl degradation.  相似文献   

11.
As a frequently used product with antimicrobial activity, consumed allicin might be discharged and concentrated in waste-activated sludge (WAS). However, the influence of allicin (as an exogenous pollutant) on WAS fermentation has not been clearly revealed. This study aimed to disclose the impacts of allicin on volatile fatty acid (VFA) generation during WAS fermentation. The results showed that the appropriate presence of allicin (10 mg/g TSS) significantly enhanced the VFA yield (1894 versus 575 mg COD/L in the control) with increased acetate proportion (24.3%). Further exploration found that allicin promoted WAS solubilization, hydrolysis and acidification simultaneously. Metagenomic analysis revealed that the key genes involved in extracellular hydrolysis metabolism (i.e., CAZymes), membrane transport (i.e., gtsA and ytfT), substrate metabolism (i.e., yhdR and pfkC) and fatty acid synthesis (i.e., accA and accD) were all highly expressed. Allicin also induced the bacteria to produce more signalling molecules and regulate cellular functions, thereby enhancing the microbial adaptive and regulatory capacity to the unfavourable environment. Moreover, the variations in fermentative microbes and their contributions to the upregulation of functional genes (i.e., ytfR, gltL, INV, iolD and pflD) for VFA generation were disclosed. Overall, the simultaneous stimulation of functional microbial abundances and metabolic activities contributed to VFA production in allicin-conditioned reactors.  相似文献   

12.
The combination of intercropping and phytoremediation in the remediation of cadmium contaminated soil is an emerging model in recent years, but the results of previous studies are inconsistent. In the field experiment, eggplant was intercropped with hyperaccumulator Sedum alfredii Hance (inoculated or not inoculated with endophytic bacteria) to study the effects of intercropping on vegetable safety production, phytoremediation efficiency of hyperaccumulator and variation of soil available nutrients. The results showed that the intercropping treatment had a negative effect on the growth of eggplant and Sedum, but endophyte SaMR12 alleviated the inhibition of intercropping on plant growth. Intercropping treatment increases the Cd concentration in edible part of eggplant to 1.34 mg/kg compared with eggplant monoculture (1.19 mg/kg). While the application of SaMR12 reduces the Cd concentration of eggplant fruit to 0.95 mg/kg and significantly promotes the Cd uptake by Sedum. What's more surprising is that compared with eggplant monocropping, the content of soil available nitrogen, phosphorus and potassium in the treatment of intercropping with inoculated Sedum increased significantly. And according to the correlation analysis of various indexes of plants and soil, the Cd content of eggplant is negatively correlated with the available phosphorus and potassium in the soil, while the Cd content of Sedum is positively correlated with it, which suggested that the application of phosphorus and potassium fertilizers in this experimental site was beneficial to reduce Cd content in eggplant and improve Cd phytoextraction of Sedum. Therefore, in the daily production of moderately Cd-contaminated soil, intercropping eggplant with Sedum inoculated with endophytic bacteria is an excellent Phytoextraction Coupled with Agro-safe-production (PCA) pattern.  相似文献   

13.
Foliar application of Si can generally reduce As translocation from roots to shoots in rice; however, it does not always work, particularly under high As stress. Here, the effects of foliar application of nanoscale silica sol on As accumulation in rice were investigated under low (2 μmol/L) and high (8 μmol/L) arsenite stress. The results revealed that foliar Si application significantly decreased the As concentration in shoots under low arsenite stress, but showed different effects under high arsenite stress after 7 days of incubation. The reduction in root-to-shoot As translocation under the 2As+Si treatment was related to the down-regulation of OsLsi1 and OsLsi2 expression and up-regulation of OsABCC1 expression in roots. In the 8As+Si treatment, the expressions of OsLsi1, OsLsi2, and OsABCC1 were significantly promoted, which resulted in substantially higher As accumulation in both the roots and shoots. In the roots, As predominantly accumulated in the symplasts (90.6%–98.3%), in which the majority of As was sequestered in vacuoles (79.0%–94.0%) under both levels of arsenite stress. Compared with that of the 8As treatment, the 8As+Si treatment significantly increased the As concentration in cell walls, but showed no difference in the vacuolar As concentration, which remained constant at approximately 69.1–71.7 mg/kg during days 4–7. It appeared that the capacity of root cells to sequester As in the vacuoles had a threshold, and the excess As tended to accumulate in the cell walls and transfer to the shoots via apoplasts under high arsenite stress. This study provides a better understanding of the different effects of foliar Si application on As accumulation in rice from the view of arsenite-related gene expression and As subcellular distribution in roots.  相似文献   

14.
To manage potential microbial risks and meet increasingly strict drinking water health standards,UV treatment has attracted increasing attention for use in drinking water systems in China.However,the effects of UV treatment on microbial control and disinfection byproducts(DBPs) formation in real municipal drinking water systems are poorly understood.Here,we collected water samples from three real drinking water systems in Beijing and Tianjin to investigate the impacts of UV treatment on microbia...  相似文献   

15.
In this work, a series of Cu-ZSM-5 catalysts with different SiO2/Al2O3 ratios(25, 50, 100 and200) were synthesized and investigated in n-butylamine catalytic degradation. The n-butylamine can be completely catalytic degradation at 350 °C over all Cu-ZSM-5 catalysts. Moreover, Cu-ZSM-5(25) exhibited the highest selectivity to N2, exceeding 90% at 350 °C. These samples were investigated in detail by several characterizations to illuminate the ...  相似文献   

16.
Nitrate (NO3?) is known to be actively involved in the processes of mineralization and heavy metal transformation; however, it is unclear whether and how it affects the bioavailability of antimony (Sb) in paddy soils and subsequent Sb accumulation in rice. Here, the effects of NO3? on Sb transformation in soil-rice system were investigated with pot experiments over the entire growth period. Results demonstrated that NO3? reduced Sb accumulation in brown rice by 15.6% compared to that in the control. After amendment with NO3?, the Sb content in rice plants increased initially and then gradually decreased (in roots by 46.1%). During the first 15 days, the soil pH increased, the oxidation of Sb(III) and sulfides was promoted, but the reduction of iron oxide minerals was inhibited, resulting in the release of adsorbed and organic-bound Sb from soil. The microbial arsenite-oxidizing marker gene aoxB played an important role in Sb(III) oxidation. From days 15 to 45, after NO3? was partially consumed, the soil pH decreased, and the reductive dissolution of Fe(III)-bearing minerals was enhanced; consequently, iron oxide-bound Sb was transformed into adsorbed and dissolved Sb species. After day 45, NO3? was completely reduced, Sb(V) was evidently reduced to Sb(III), and green rust was generated gradually. Thus, the available Sb decreased due to its enhanced affinity for iron oxides. Moreover, NO3? inhibited the reductive dissolution of iron minerals, which ultimately caused low Sb availability. Therefore, NO3? can chemically and biologically reduce the Sb availability in paddy soils and alleviate Sb accumulation in rice. This study provides a potential strategy for decreasing Sb accumulation in rice in the Sb-contaminated sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号