首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nowadays, the fine particle pollution is still severe in some megacities of China, especially in the Sichuan Basin, southwestern China. In order to understand the causes, sources, and impacts of fine particles, we collected PM2.5 samples and analyzed their chemical composition in typical months from July 2018 to May 2019 at an urban and a suburban (background) site of Chengdu, a megacity in this region. The daily average concentrations of PM2.5 ranged from 5.6-102.3 µg/m3 and 4.3-110.4 µg/m3 at each site. Secondary inorganics and organic matters were the major components in PM2.5 at both sites. The proportion of nitrate in PM2.5 has exceeded sulfate and become the primary inorganic component. SO2 was easier to transform into sulfate in urban areas because of Mn-catalytic heterogeneous reactions. In contrast, NO2 was easily converted in suburbs with high aerosol water content. Furthermore, organic carbon in urban was much greater than that in rural, other than elemental carbon. Element Cr and As were the key cancer risk drivers. The main sources of PM2.5 in urban and suburban areas were all secondary aerosols (42.9%, 32.1%), combustion (16.0%, 25.2%) and vehicle emission (15.2%, 19.2%). From clean period to pollution period, the contributions from combustion and secondary aerosols increased markedly. In addition to tightening vehicle controls, urban areas need to restrict emissions from steel smelters, and suburbs need to minimize coal and biomass combustion in autumn and winter.  相似文献   

2.
The COVID-19 pandemic has raised awareness about various environmental issues,including PM2.5 pollution.Here,PM2.5 pollution during the COVID-19 lockdown was traced and analyzed to clarify the sources and factors influencing PM2.5 in Guangzhou,with an emphasis on heavy pollution.The lockdown led to large reductions in industrial and traffic emissions,which significantly reduced PM2.5 concentrations in Guangzhou.Interestingly,the trend of PM2.5  相似文献   

3.
The region along the Taihang Mountains in the North China Plain (NCP) is characterized by serious fine particle pollution. To clarify the formation mechanism and controlling factors, an observational study was conducted to investigate the physical and chemical properties of the fine particulate matter in Jiaozuo city, China. Mass concentrations of the water-soluble ions (WSIs) in PM2.5 and gaseous pollutant precursors were measured on an hourly basis from December 1, 2017, to February 27, 2018. The positive matrix factorization (PMF) method and the FLEXible PARTicle (FLEXPART) model were employed to identify the sources of PM2.5. The results showed that the average mass concentration of PM2.5 was 111 μg/m3 during the observation period. Among the major WSIs, sulfate, nitrate, and ammonium (SNA) constituted 62% of the total PM2.5 mass, and NO3? ranked the highest with an average contribution of 24.6%. NH4+ was abundant in most cases in Jiaozuo. According to chemical balance analysis, SO42?, NO3?, and Cl? might be present in the form of (NH4)2SO4, NH4NO3, NH4Cl, and KCl. The liquid-phase oxidation of SO2 and NO2 was severe during the haze period. The relative humidity and pH were the key factors influencing SO42- formation. We found that NO3? mainly stemmed from homogeneous gas-phase reactions in the daytime and originated from the hydrolysis of N2O5 in the nighttime, which was inconsistent with previous studies. The PMF model identified five sources of PM2.5: secondary origin (37.8%), vehicular emissions (34.7%), biomass burning (11.5%), coal combustion (9.4%), and crustal dust (6.6%).  相似文献   

4.
Polycyclic aromatic hydrocarbons(PAHs) and their nitrated derivatives(NPAHs) attract continuous attention due to their outstanding carcinogenicity and mutagenicity. In order to investigate the diurnal variations, sources, formation mechanism, and health risk assessment of them in heating season, particulate matter(PM) were collected in Beijing urban area from December 26, 2017 to January 17, 2018. PAHs and NPAHs in PM were quantitatively analyzed via gas chromatography-mass spectrometry(GC-MS). ...  相似文献   

5.
Beijing sufered from serious air pollution in October, 2011 with the occurrence of three continuous episodes. Here we analyze the pollution status of particulate matter, the relationship between the gaseous pollutants, physical and chemical properties of single particles, and the profile of watersoluble ions in PM2.5during the three episodes. Regional and photochemically aged air masses, which were characterized as having high values of O3and SO2, were hypothesized to have played a dominant role in the first episode. After mixing local air masses with freshly-emitted primary pollutants, the concentration of NOx continued to increase and the size of SO4 2, NO3 and NH4 +in the particle population continued to become smaller. The amount of elemental carbon-rich and organic carbonrich particles in the scaled single particles(0.2–2 μm) and water-soluble K+in PM2.5also increased in the episodes. All the available information suggests that the biomass or fuel burning sources in or around Beijing may have had a huge impact on the last two episodes.  相似文献   

6.
To evaluate the effectiveness of emission control regulations designed for reducing air pollution, chemically resolved PM2.5 data have been collected across Canada through the National Air Pollution Surveillance network in the past decade. 24-hr time integrated PM2.5 collected at seven urban and two rural sites during 2010-2016 were analyzed to characterize geographical and seasonal patterns and associated potential causes. Site-specific seven-year mean gravimetric PM2.5 mass concentrations ranged from 5.7 to 9.6 µg/m3. Seven-year mean concentrations of SO42?, NO3?, NH4+, organic carbon (OC), and elemental carbon (EC) were in the range of 0.68 to 1.6, 0.21 to 1.5, 0.27 to 0.71, 1.1 to 1.9, and 0.37 to 0.71 µg /m3, accounting for 10.8%-18.1%, 3.7%-16.7%, 4.7%-7.4%, 18.4%-21.0%, and 6.4%-10.6%, respectively, of gravimetric PM2.5 mass. PM2.5 and its five major chemical components showed higher concentrations in southeastern Canada and lower values in Atlantic Canada, with the seven-year mean ratios between the two regions being on the order of 1.7 for PM2.5 and 1.8-7.1 for its chemical components. When comparing the concentrations between urban and rural sites within the same region, those of SO42? and NH4+ were comparable, while those of NO3?, OC, and EC were around 20%, 40%-50%, and 70%-80%, respectively, higher at urban than rural sites, indicating the regional scale impacts of SO42? and NH4+ and effects of local sources on OC and EC. Monthly variations generally showed summertime peaks for SO42? and wintertime peaks for NO3?, but those of NH4+, OC, and EC exhibited different seasonality at different locations.  相似文献   

7.
Particulate matter (i.e., PM1.0 and PM2.5), considered as the key atmospheric pollutants, exerts negative effects on visibility, global climate, and human health by associated chemical compositions. However, our understanding of PM and its chemical compositions in Beijing under the current atmospheric environment is still not complete after witnessing marked alleviation during 2013–2017. Continuous measurements can be crucial for further air quality improvement by better characterizing PM pollution and chemical compositions in Beijing. Here, we conducted simultaneous measurements on PM in Beijing during 2018–2019. Results indicate that annual mean PM1.0 and PM2.5 concentrations were 35.49 ± 18.61 µg/m3 and 66.58 ± 60.17 µg/m3, showing a positive response to emission controls. The contribution of sulfate, nitrate, and ammonium (SNA) played an enhanced role with elevated PM loading and acted as the main contributors to pollution episodes. Discrepancies observed among chemical species between PM1.0 and PM2.5 in spring suggest that sand particles trend to accumulate in the range of 1–2.5 µm. Pollution episodes occurred accompanied with southerly clusters and high formation of SNA by heterogeneous reactions in summer and winter, respectively. Results from positive matrix factorization (PMF) combined with potential source contribution function (PSCF) models showed that potential areas were seasonal dependent, secondary and vehicular sources became much more important compared with previous studies in Beijing. Our study presented a continuous investigation on PM and sources origins in Beijing, which provides a better understanding for further emission control as well as a reference for other cities in developing countries.  相似文献   

8.
Mass level of fine particles(PM2.5) in main cities in China has decreased significantly in recent years due to implementation of Chinese Clean Air Action Plan since 2013,however,03 pollution is getting worse than before,especially in megacities such as in Shanghai.In this work,O3 and PM2.5 were continuously monitored from May 27,2018 to March 31,2019.Our data showed that the annual average concentration of PM2.5 and O3(O3-8 hr,max...  相似文献   

9.
Following the implementation of the strictest clean air policies to date in Beijing, the physicochemical characteristics and sources of PM2.5 have changed over the past few years. To improve pollution reduction policies and subsequent air quality further, it is necessary to explore the changes in PM2.5 over time. In this study, over one year (2017–2018) field study based on filter sampling (TH-150C; Wuhan Tianhong, China) was conducted in Fengtai District, Beijing, revealed that the annual average PM2.5 concentration (64.8 ± 43.1 μg/m3) was significantly lower than in previous years and the highest PM2.5 concentration occurred in spring (84.4 ± 59.9 μg/m3). Secondary nitrate was the largest source and accounted for 25.7% of the measured PM2.5. Vehicular emission, the second largest source (17.6%), deserves more attention when considering the increase in the number of motor vehicles and its contribution to gaseous pollutants. In addition, the contribution from coal combustion to PM2.5 decreased significantly. During weekends, the contribution from EC and NO3? increased whereas the contributions from SO42?, OM, and trace elements decreased, compared with weekdays. During the period of residential heating, PM2.5 mass decreased by 23.1%, compared with non-heating period, while the contributions from coal combustion and vehicular emission, and related species increased. With the aggravation of pollution, the contribution of vehicular emission and secondary sulfate increased and then decreased, while the contribution of NO3? and secondary nitrate continued to increase, and accounted for 34.0% and 57.5% of the PM2.5 during the heavily polluted days, respectively.  相似文献   

10.
Recently,air pollution especially?ne particulate matters (PM2.5) and ozone (O3) has become a severe issue in China.In this study,we?rst characterized the temporal trends of PM2.5and O3for Beijing,Guangzhou,Shanghai,and Wuhan respectively during 2018-2020.The annual mean PM2.5has decreased by 7.82%-33.92%,while O3concentration showed insigni?cant variations by-6.77%-4.65%during 2018-2020.The generalized additive models (GAMs) were ...  相似文献   

11.
To investigate the characteristics of particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) and its chemical compositions in the Beijing-Tianjin-Hebei (BTH) region of China during the novel coronavirus disease (COVID-19) lockdown, the ground-based data of PM2.5, trace gases, water-soluble inorganic ions, and organic and elemental carbon were analyzed in three typical cities (Beijing, Tianjin, and Baoding) in the BTH region of China from 5-15 February 2020. The PM2.5 source apportionment was established by combining the weather research and forecasting model and comprehensive air quality model with extensions (WRF-CAMx). The results showed that the maximum daily PM2.5 concentration reached the heavy pollution level (>150 μg/m3) in the above three cities. The sum concentration of SO42−, NO3 and NH4+ played a dominant position in PM2.5 chemical compositions of Beijing, Tianjin, and Baoding; secondary transformation of gaseous pollutants contributed significantly to PM2.5 generation, and the secondary transformation was enhanced as the increased PM2.5 concentrations. The results of WRF-CAMx showed obviously inter-transport of PM2.5 in the BTH region; the contribution of transportation source decreased significantly than previous reports in Beijing, Tianjin, and Baoding during the COVID-19 lockdown; but the contribution of industrial and residential emission sources increased significantly with the increase of PM2.5 concentration, and industry emission sources contributed the most to PM2.5 concentrations. Therefore, control policies should be devoted to reducing industrial emissions and regional joint control strategies to mitigate haze pollution.  相似文献   

12.
天津采暖期大气PM2.5中重金属元素污染及其生态风险评价   总被引:8,自引:0,他引:8  
为揭示天津地区大气中重金属污染的潜在风险,分析了天津采暖期城区和武清大气PM2.5中重金属元素水平,并分别采用富集因子法和潜在生态风险指数法对重金属污染风险进行了评价.结果表明,天津城区大气PM2.5中重金属元素的浓度水平排序为Zn>Ti>Mn>Pb>Cu>Cr>Co>As>Cd>Hg,武清则为Zn>Ti>Pb>Mn>Cr>Cu>Co>As>Cd>Hg; Cu,Zn,Pb和Cd等元素的富集因子高于10,表明其系人为污染元素;重金属元素污染评价显示Ti和Mn基本无污染,As、Cr、Co等元素存在一定污染, Cu、Zn、Pb和Cd等元素潜在生态风险高,Cd生态危害程度极强,总体潜在生态风险指数分别为1381.1(城区)和1251.1(武清),达到极强程度.  相似文献   

13.
针对2017~2018年采暖季太原市PM2.5及其水溶性离子、碳质组分和无机元素开展在线观测,结合气象数据分析不同污染水平下的组分特征.分析表明,2017~2018年太原市采暖季细颗粒物主要化学成分为SO42-、NO3-、NH4+、Cl-、Ca2+、OC、EC,且呈现OC>SO42- > NO3- > NH4+ > Cl- > Ca2+ > EC的趋势,随污染水平增长最多的是二次无机物;优良、轻度污染和重污染3种污染水平下OC、EC相关系数分别为0.69、0.66、0.55,N/S分别为1.06、1.29、0.93,表明随着污染水平的提高,OC和EC的来源一致性逐步变差,且排放源虽仍处于氮排放源(移动源和工业源)和硫排放源(燃煤源)的共同控制,但硫排放源贡献率显著升高.重污染事件分析表明太原市重污染应对过程中不仅需要加强机动车、工业源等污染源的管控,更需要重点加强燃煤管控.  相似文献   

14.
我国PM2.5的污染状况和污染特征   总被引:6,自引:0,他引:6  
对中国大气中PM2.5的污染状况和污染特征进行了综述和分析,其中包括我国PM2.5质量浓度的时间、空间污染特征、来源解析以及与PM10的关系.  相似文献   

15.
Fine particulatematter (PM2.5) is associated with increased risks of Alzheimer’s disease (AD),yet the toxicologicalmechanisms of PM2.5 promoting AD remain unclear. In this study,wildtype and APP/PS1 transgenic mice (AD mice) were exposed to either filtered air (FA) or PM2.5 for eight weeks with a real-world exposure system in Taiyuan, China (mean PM2.5 concentration in the cage was 61 μg/m3). We found that PM2.5 exposure could remarkably aggravate AD mice’s ethological and brain ultrastructural damage, along with the elevation of the pro-inflammatory cytokines (IL-6 and TNF-α), Aβ-42 and AChE levels and the decline of ChAT levels in the brains. Based on high-throughput sequencing results, some differentially expressed (DE) mRNAs and DE miRNAs in the brains of AD mice after PM2.5 exposure were screened.Using RT-qPCR, seven DEmiRNAs (mmu-miR-193b-5p, 122b-5p, 466h-3p, 10b-5p, 1895, 384–5p, and 6412) and six genes (Pcdhgb8, Unc13b, Robo3, Prph, Pter, and Tbata) were evidenced the and verified. Two miRNA-target gene pairs (miR-125b-Pcdhgb8 pair and miR-466h-3p-IL-17Rα/TGF-βR2/Aβ-42/AChE pairs) were demonstrated that they were more related to PM2.5-induced brain injury. Results of Gene Ontology (GO) pathways and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways predicted that synaptic and postsynaptic regulation, axon guidance, Wnt, MAPK, and mTOR pathways might be the possible regulatory mechanisms associated with pathological response. These revealed that PM2.5- elevated pro-inflammatory cytokine levels and PM2.5-altered neurotransmitter levels in AD mice could be the important causes of brain damage and proposed the promising miRNA andmRNA biomarkers and potentialmiRNA-mRNA interaction networks of PM2.5-promoted AD.  相似文献   

16.
The role of PM2.5 (particles with aerodynamic diameters ≤ 2.5 µm) deposition in air quality changes over China remains unclear. By using the three-year (2013, 2015, and 2017) simulation results of the WRF/CUACE v1.0 model from a previous work (Zhang et al., 2021), a non-linear relationship between the deposition of PM2.5 and anthropogenic emissions over central-eastern China in cold seasons as well as in different life stages of haze events was unraveled. PM2.5 deposition is spatially distributed differently from PM2.5 concentrations and anthropogenic emissions over China. The North China Plain (NCP) is typically characterized by higher anthropogenic emissions compared to southern China, such as the middle-low reaches of Yangtze River (MLYR), which includes parts of the Yangtze River Delta and the Midwest. However, PM2.5 deposition in the NCP is significantly lower than that in the MLYR region, suggesting that in addition to meteorology and emissions, lower deposition is another important factor in the increase in haze levels. Regional transport of pollution in central-eastern China acts as a moderator of pollution levels in different regions, for example by bringing pollution from the NCP to the MLYR region in cold seasons. It was found that in typical haze events the deposition flux of PM2.5 during the removal stages is substantially higher than that in accumulation stages, with most of the PM2.5 being transported southward and deposited to the MLYR and Sichuan Basin region, corresponding to a latitude range of about 24°N-31°N.  相似文献   

17.
根据2014年1月1日~6月30日江苏省13地级市监测PM2.5,PM10的数据,分析其污染特征.结果表明:全省PM2.5和PM10污染较严重,全省PM2.5,PM10超标率都分别达到78.33%,66.11%以上,尤其是细颗粒物的污染占主导地位;PM2.5/PM10的比值范围达到0.461 9~0.687 2,全省PM2.5和PM10之间存在显著的线性关系;PM2.5,PM10浓度时空分布特征为PM2.5:1月>3月>2月>5月>6月>4月,PM10:1月>5月>3月>6月>2月>4月;苏北>苏中>苏南.  相似文献   

18.
Atmospheric extinction is impacted by the chemical composition of particles. To better understand the chemical composition of PM2.5 (particles with diameters of less than 2.5 μm) and its relationship with extinction, one-month sampling campaigns were carried out in four different seasons from 2013 to 2014 in Jinan, China. The seasonal average concentrations of PM2.5 were 120.9 (autumn), 156.6 (winter), 102.5 (spring), and 111.8 μg/m3 (summer). The reconstructed PM2.5 chemical composition showed that sulfate, nitrate, chlorine salt, organic matter (OM), mineral dust, elemental carbon (EC) and others accounted for 25%, 14%, 2%, 24%, 22%, 3% and 10%, respectively. The relationship between the chemical composition of PM2.5 and visibility was reconstructed by the IMPROVE method, and ammonium sulfate, ammonium nitrate, OM and EC dominated the visibility. Seven main sources were resolved for PM2.5, including secondary particles, coal combustion, biomass burning, industry, motor vehicle exhaust, soil dust and cooking, which accounted for 37%, 21%, 13%, 13%, 12%, 3% and 1%, respectively. The contributions of different sources to visibility were similar to those to PM2.5. With increasing severity of air pollution, the contributions of secondary particles and coal combustion increased, while the contribution of motor vehicle exhaust decreased. The results showed that coal combustion and biomass burning were still the main sources of air pollution in Jinan.  相似文献   

19.
Air pollution in China is complex, and the formation mechanism of chemical components in particulate matter is still unclear. This study selected three consecutive heavy haze pollution episodes (HPEs) during winter in Beijing for continuous field observation, including an episode with heavy air pollution under red alert. Clean days during the observation period were selected for comparison. The HPE characteristics of Beijing in winter were: under the influence of adverse meteorological conditions such as high relative humidity, temperature inversion and low wind speed; and strengthening of secondary transformation reactions, which further intensified the accumulation of secondary aerosols and other pollutants, promoting the explosive growth of PM2.5. PM2.5/CO values, as indicators of the contribution of secondary transformation in PM2.5, were approximately 2 times higher in the HPEs than the average PM2.5/CO during the clean period. The secondary inorganic aerosols (sulfate nitrate and ammonium salt) were significantly enhanced during the HPEs, and the conversion coefficients were remarkably improved. In addition, it is interesting to observe that the production of sulfate tended to exceed that of nitrate in the late stage of all three HPEs. The existence of aqueous phase reactions led to the explosive growth sulfur oxidation ratio (SOR) and rapid generation of sulfate under high relative humidity (RH>70%).  相似文献   

20.
As an important precursor of hydroxyl radical (OH), nitrous acid (HONO) plays a significant role in atmospheric chemistry. Here, an observation of HONO and relevant air pollutants in an urban site of Beijing from 14 to 28 April, 2017 was performed. Two distinct peaks of HONO concentrations occurred during the observation. In contrast, the concentration of particulate matter in the first period (period Ⅰ) was significantly higher than that in the second period (period Ⅱ). Comparing to HONO sources in the two periods, we found that the direct vehicle emission was an essential source of the ambient HONO during both periods at night, especially in period Ⅱ. The heterogeneous reaction of NO2 was the dominant source in period Ⅰ, while the homogeneous reaction of NO with OH was more critical source at night in period Ⅱ. In the daytime, the heterogeneous reaction of NO2 was a significant source and was confirmed by the good correlation coefficients (R2) between the unknown sources (Punknown) with NO2, PM2.5, NO2 × PM2.5 in period Ⅰ. Moreover, when solar radiation and OH radicals were considered to explore unknown sources in the daytime, the enhanced correlation of Punknown with photolysis rate of NO2 and OH (JNO2 × OH) were 0.93 in period Ⅰ, 0.95 in period Ⅱ. These excellent correlation coefficients suggested that the unknown sources released HONO highly related to the solar radiation and the variation of OH radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号