共查询到20条相似文献,搜索用时 8 毫秒
1.
Human exposure to contaminants from electronic cigarettes(e-cigarettes) and the associated health effects are poorly understood.There has been no report on the speciation of arsenic in e-liquid(solution used for e-cigarettes) and aerosols.We report here determination of arsenic species in e-liquids and aerosols generated from vaping the e-liquid.Seventeen e-liquid samples of major brands,purchased from local and online stores in Canada and China,were analyzed for arsenic species using high-perfo... 相似文献
2.
3.
《环境科学学报(英文版)》2023,35(3):701-711
Paddy soils are potential hotspots of combined contamination with arsenic (As) and antibiotics, which may induce co-selection of antibiotic resistance genes (ARGs) and As biotransformation genes (ABGs), resulting in dissemination of antimicrobial resistance and modification in As biogeochemical cycling. So far, little information is available for these co-selection processes and specific patterns between ABGs and ARGs in paddy soils. Here, the 16S rRNA amplicon sequencing and high-throughput quantitative PCR and network analysis were employed to investigate the dynamic response of ABGs and ARGs to As stress and manure application. The results showed that As stress increased the abundance of ARGs and mobile genetic elements (MGEs), resulting in dissemination risk of antimicrobial resistance. Manure amendment increased the abundance of ABGs, enhanced As mobilization and methylation in paddy soil, posing risk to food safety. The frequency of the co-occurrence between ABGs and ARGs, the host bacteria carrying both ARGs and ABGs were increased by As or manure treatment, and remarkably boosted in soils amended with both As and manure. Multidrug resistance genes were found to have the preference to be co-selected with ABGs, which was one of the dominant co-occurring ARGs in all treatments, and manure amendment increased the frequency of Macrolide-Lincosamide-Streptogramin B resistance (MLSB) to co-occur with ABGs. Bacillus and Clostridium of Firmicutes are the dominant host bacteria carrying both ABGs and ARGs in paddy soils. This study would extend our understanding on the co-selection between genes for antibiotics and metals, also unveil the hidden environmental effects of combined pollution. 相似文献
4.
Lyu Li Dong Zhu Xingyun Yi Jianqiang Su Guilan Duan Xianjin Tang Yongguan Zhu 《环境科学学报(英文版)》2021,33(11):171-180
Polymyxin B (PMB) is considered as the last line of antibiotic defense available to humans. The environmental effects of the combined pollution with PMB and heavy metals and their interaction mechanisms are unclear. We explored the effects of the combined pollution with PMB and arsenic (As) on the microbial composition of the soil and in the earthworm gut, as well as the spread and transmission of antibiotic resistance genes (ARGs). The results showed that, compared with As alone, the combined addition of PMB and As could significantly increase the bioaccumulation factor and toxicity of As in earthworm tissues by 12.1% and 16.0%, respectively. PMB treatment could significantly increase the abundance of Actinobacteria in the earthworm gut (from 35.6% to 45.2%), and As stress could significantly increase the abundance of Proteobacteria (from 19.8% to 56.9%). PMB and As stress both could significantly increase the abundance of ARGs and mobile genetic elements (MGEs), which were positively correlated, indicating that ARGs might be horizontally transferred. The inactivation of antibiotics was the main resistance mechanism that microbes use to resist PMB and As stress. Network analysis showed that PMB and As might have antagonistic effects through competition with multi-drug resistant ARGs. The combined pollution by PMB and As significantly promoted the relative abundance of microbes carrying multi-drug resistant ARGs and MGEs, thereby increasing the risk of transmission of ARGs. This research advances the understanding of the interaction mechanism between antibiotics and heavy metals and provides new theoretical guidance for the environmental risk assessment and combined pollution management. 相似文献
5.
The long term exposure of arsenic via drinking water has resulted in wide occurrence of arsenisim globally, and the oxidation of the non-ionic arsenite (As(III)) to negatively-charged arsenate (As(V)) is of crucial importance for the promising removal of arsenic. The chemical oxidants of ozone, chlorine, chlorine dioxide, and potassium permanganate may achieve this goal; however, their application in developing countries is sometimes restricted by the complicate operation and high cost. This review paper focuses on the heterogeneous oxidation of As(III) by solid oxidants such as manganese oxide, and the adsorption of As(V) accordingly. Manganese oxide may be prepared by both chemical and biological methods to achieve good oxidation performance towards As(III). Additionally, manganese oxide may be combined with other metal oxides, e.g., iron oxide, to improve the adsorption capability towards As(V). Furthermore, manganese oxide may be coated onto porous materials of metal organic frameworks to develop novel adsorbents for arsenic removal. To achieve the application in engineering works, the adsorbents granulation may be achieved by drying and calcination, agglomeration, and the active components may also be in situ coated onto the porous materials to maintain the oxidation and adsorption activities as much as possible. The novel adsorbents with heterogeneous oxidation and adsorption capability may be carefully designed for the removal of arsenic in household purifiers, community-level decentralized small systems, and the large-scale drinking water treatment plants (DWTPs). This review provides insight into the fundamental studies on novel adsorbents, the development of innovative technologies, and the demonstration engineering works involved in the heterogeneous oxidation and adsorption, and may be practically valuable for the arsenic pollution control globally. 相似文献
6.
Dietary uptake is the major way that inorganic arsenic (iAs) enters into benthic fish; however, the metabolic process of dietborne iAs in fish muscle following chronic exposure remains unclear. This was a 40-day study on chronic dietborne iAs [arsenite (AsIII) and arsenate (AsV)] exposure in the benthic freshwater food fish, the crucian carp (Carassius auratus), which determined the temporal profiles of iAs metabolism and toxicokinetics during exposure. We found that an adaptive response occurred in the fish body after iAs dietary exposure, which was associated with decreased As accumulation and increased As transformation into a non-toxic As form (arsenobetaine). The bioavailability of dietary AsIII was lower than that of AsV, probably because AsIII has a lower ability to pass through fish tissues. Dietary AsV exhibited a high potential for transformation into AsIII species, which then accumulated in fish muscle. The largely produced AsIII considered more toxic at the earlier stage of AsV exposure should attract sufficient attention to human exposure assessment. Therefore, the pristine As species and exposure duration had significant effects on As bioaccumulation and biotransformation in fish. The behavior determined for dietborne arsenic in food fish is crucial for not only arsenic ecotoxicology but also food safety. 相似文献
7.
Jin Xie Xiao-Dong Niu Jiao-Jiao Xie Kai-Qiang He Meng-Dan Shi Su-Juan Yu Chun-Gang Yuan Jing-Fu Liu 《环境科学学报(英文版)》2021,33(10):1-7
The distribution and chemical speciation of arsenic (As) in different sized atmospheric particulate matters (PMs), including total suspended particles (TSP), PM10, and PM2.5, collected from Baoding, China were analyzed. The average total mass concentrations of As in TSP, PM10, and PM2.5 were 31.5, 35.3, and 54.1 µg/g, respectively, with an order of PM2.5 >PM 10 > TSP, revealing that As is prone to accumulate on fine particles. Due to the divergent toxicities of different As species, speciation analysis of As in PMs is further conducted. Most of previous studies mainly focused on inorganic arsenite (iAsIII), inorganic arsenate (iAsV), monomethylarsonate (MMA), and dimethylarsinate (DMA) in PMs, while the identification and sensitive quantification of trimethylarsine oxide (TMAO) were rarely reported. In this study, a high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry system was optimized for As speciation including TMAO in PMs. An anion exchange column was used to separate MMA, DMA and iAsV, while a cation exchange column to separate TMAO and iAsIII. Results showed that iAsV was the dominate component in all the samples, corresponding to a portion of 79.2% ± 9.3% of the total extractable species, while iAsIII, TMAO and DMA made up the remaining 21%. Our study demonstrated that iAsIII accounted for about 14.4% ± 11.4% of the total extracted species, with an average concentration of 1.7 ± 1.6 ng/m3. It is worth noting that TMAO was widely present in the samples (84 out of 97 samples), which supported the assumption that TMAO was ubiquitous in atmospheric particles. 相似文献
8.
Shewanella sp. ANA-3 with the respiratory arsenate reductase (ArrAB) and MR-1 with ferric reduction ability always coexist in the presence of high arsenic (As)-containing waste residue. However, their synergistic impacts on As transformation and mobility remain unclear. To identify which bacterium, ANA-3 or MR-1, dominates As mobility in the coexisting environment, we explored the As biotransformation in the industrial waste residue in the presence of Shewanella sp. ANA-3 and MR-1. The incubation results show that As(III) was the main soluble species, and strain ANA-3 dominated As mobilization. The impact of ANA-3 was weakened by MR-1, probably due to the survival competition between these two bacteria. The results of micro X-ray fluorescence and X-ray photoelectron spectroscopy analyses further reveal the pathway for ANA-3 to enhance As mobility. Strain ANA-3 almost reduced 100% surface-bound Fe(III), and consequently led to As(V) release. The dissolved As(V) was then reduced to As(III) by ANA-3. The results of this study help to understand the fate of arsenic in the subsurface and highlight the importance of the safe disposal of high As-containing industrial waste. 相似文献
9.
10.
Comparative cytotoxicity of fourteen trivalent and pentavalent arsenic species determined using real-time cell sensing 总被引:1,自引:0,他引:1
Birget Moe Hanyong Peng Xiufen Lu Baowei Chen Lydia W.L. Chen Stephan Gabos Xing-Fang Li X. Chris Le 《环境科学学报(英文版)》2016,28(11):113-124
The occurrence of a large number of diverse arsenic species in the environment and in biological systems makes it important to compare their relative toxicity. The toxicity of arsenic species has been examined in various cell lines using different assays, making comparison difficult. We report real-time cell sensing of two human cell lines to examine the cytotoxicity of fourteen arsenic species: arsenite(As~Ⅲ), monomethylarsonous acid(MMA~Ⅲ) originating from the oxide and iodide forms, dimethylarsinous acid(DMA~Ⅲ), dimethylarsinic glutathione(DMAG~Ⅲ), phenylarsine oxide(PAO~Ⅲ), arsenate(AsV), monomethylarsonic acid(MMA~Ⅴ), dimethylarsinic acid(DMA~Ⅴ),monomethyltrithioarsonate(MMTTA~Ⅴ), dimethylmonothioarsinate(DMMTA~Ⅴ),dimethyldithioarsinate(DMDTA~Ⅴ), 3-nitro-4-hydroxyphenylarsonic acid(Roxarsone, Rox),and 4-aminobenzenearsenic acid(p-arsanilic acid, p-ASA). Cellular responses were measured in real time for 72 hr in human lung(A549) and bladder(T24) cells. IC50 values for the arsenicals were determined continuously over the exposure time, giving rise to IC50 histograms and unique cell response profiles. Arsenic accumulation and speciation were analyzed using inductively coupled plasma-mass spectrometry(ICP-MS). On the basis of the 24-hr IC50 values, the relative cytotoxicity of the tested arsenicals was in the following decreasing order: PAO~Ⅲ? MMA~Ⅲ≥ DMA~Ⅲ≥ DMAG~Ⅲ≈ DMMTA~Ⅴ≥ As~Ⅲ? MMTTA~Ⅴ AsV DMDTA~ⅤDMA~Ⅴ MMA~Ⅴ≥ Rox ≥ p-ASA. Stepwise shapes of cell response profiles for DMA~Ⅲ, DMAG~Ⅲ,and DMMTA~Ⅴcoincided with the conversion of these arsenicals to the less toxic pentavalent DMA~Ⅴ. Dynamic monitoring of real-time cellular responses to fourteen arsenicals provided useful information for comparison of their relative cytotoxicity. 相似文献
11.
Jingjing Jiang Jiaying Gao Shu Niu Xingyue Wang Tianren Li Shengda Liu Yanhong Lin Tengfeng Xie Shuangshi Dong 《环境科学学报(英文版)》2021,33(8):147-160
The extensive use of tetracycline hydrochloride (TCH) poses a threat to human health and the aquatic environment. Here, magnetic p-n Bi2WO6/CuFe2O4 catalyst was fabricated to efficiently remove TCH. The obtained Bi2WO6/CuFe2O4 exhibited 92.1% TCH degradation efficiency and 50.7% and 35.1% mineralization performance for TCH and raw secondary effluent from a wastewater treatment plant in a photo-Fenton-like system, respectively. The remarkable performance was attributed to the fact that photogenerated electrons accelerated the Fe(III)/Fe(II) and Cu(II)/Cu(I) conversion for the Fenton-like reaction between Fe(II)/Cu(I) and H2O2, thereby generating abundant ?OH for pollutant oxidation. Various environmental factors including H2O2 concentration, initial pH, catalyst dosage, TCH concentration and inorganic ions were explored. The reactive oxidation species (ROS) quenching results and electron spin resonance (ESR) spectra confirmed that ?O2? and ?OH were responsible for the dark and photo-Fenton-like systems, respectively. The degradation mechanisms and pathways of TCH were proposed, and the toxicity of products was evaluated. This work contributes a highly efficient and environmentally friendly catalyst and provides a clear mechanistic explanation for the removal of antibiotic pollutants in environmental remediation. 相似文献
12.
Alan Valdiviezo Noor A. Aly Yu-Syuan Luo Alexandra Cordov Gaston Casillas MaKayla Foster Erin S. Baker Ivan Rusyn 《环境科学学报(英文版)》2022,34(5):350-362
Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants of concern because of their ubiquitous presence in surface and ground water; analytical methods that can be used for rapid comprehensive exposure assessment and fingerprinting of PFAS are needed. Following the fires at the Intercontinental Terminals Company (ITC) in Deer Park, TX in 2019, large quantities of PFAS-containing firefighting foams were deployed. The release of these substances into the Houston Ship Channel/Galveston Bay (HSC/GB) prompted concerns over the extent and level of PFAS contamination. A targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based study of temporal and spatial patterns of PFAS associated with this incident revealed presence of 7 species; their levels gradually decreased over a 6-month period. Because the targeted LC-MS/MS analysis was focused on about 30 PFAS molecules, it may have missed other PFAS compounds present in firefighting foams. Therefore, we utilized untargeted LC-ion mobility spectrometry-mass spectrometry (LC-IMS-MS)-based analytical approach for a more comprehensive characterization of PFAS in these water samples. We analyzed 31 samples from 9 sites in the HSC/GB that were collected over 5 months after the incident. Our data showed that additional 19 PFAS were detected in surface water of HSC/GB, most of them decreased gradually after the incident. PFAS features detected by LC-MS/MS correlated well in abundance with LC-IMS-MS data; however, LC-IMS-MS identified a number of additional PFAS, many known to be components of firefighting foams. These findings therefore illustrate that untargeted LC-IMS-MS improved our understanding of PFAS presence in complex environmental samples. 相似文献
13.
Copper oxide nanomaterials have been extensively applied and can have serious impacts when discharged into the aquatic environment, especially when complexed with humic acid(HA) to form composite contaminants.As an innovative recycled coagulant aid,Enteromorpha polysaccharides(Ep) were associated with polyaluminum chloride(PACl)(denoted as PACl-Ep) to simultaneously remove CuO nanoparticles, Cu2+and HA in this study.The influence of different Al species coagulants(AlCl3, PA... 相似文献
14.
Xin Xing Na Li Jie Cheng Yonggang Sun Zhongshen Zhang Xin Zhang Zhengping Hao 《环境科学学报(英文版)》2020,32(10):55-63
In this work, a series of Cu-ZSM-5 catalysts with different SiO2/Al2O3 ratios(25, 50, 100 and200) were synthesized and investigated in n-butylamine catalytic degradation. The n-butylamine can be completely catalytic degradation at 350 °C over all Cu-ZSM-5 catalysts. Moreover, Cu-ZSM-5(25) exhibited the highest selectivity to N2, exceeding 90% at 350 °C. These samples were investigated in detail by several characterizations to illuminate the ... 相似文献
15.
William R. Cullen Qingqing Liu Xiufen Lu Anthony McKnight-Whitfor Hanyong Peng Aleksandra Popowich Xiaowen Yan Qi Zhang Michael Fricke Hongsui Sun X. Chris Le 《环境科学学报(英文版)》2016,28(11):7-27
Hundreds of millions of people around the world are exposed to elevated concentrations of inorganic and organic arsenic compounds, increasing the risk of a wide range of health effects. Studies of the environmental fate and human health effects of arsenic require authentic arsenic compounds. We summarize here the synthesis and characterization of more than a dozen methylated and thiolated arsenic compounds that are not commercially available. We discuss the methods of synthesis for the following14 trivalent(Ⅲ) and pentavalent() arsenic compounds: monomethylarsonous acid(MMA~Ⅲ), dicysteinylmethyldithioarsenite(MMA~Ⅲ(Cys)_2), monomethylarsonic acid(MMA~Ⅴ),monomethylmonothioarsonic acid(MMMTAⅤ) or monothio-MMA~Ⅴ, monomethyldithioarsonic acid(MMDTA~Ⅴ) or dithio-MMA~Ⅴ, monomethyltrithioarsonate(MMTTA~Ⅴ) or trithio-MMA~Ⅴ,dimethylarsinous acid(DMA~Ⅲ), dimethylarsino-glutathione(DMA~Ⅲ(SG)), dimethylarsinic acid(DMA~Ⅴ), dimethylmonothioarsinic acid(DMMTA~Ⅴ) or monothio-DMAⅤ, dimethyldithioarsinic acid(DMDTA~Ⅴ) or dithio-DMA~Ⅴ, trimethylarsine oxide(TMAO~Ⅴ), arsenobetaine(AsB), and an arsenicin-A model compound. We have reviewed and compared the available methods,synthesized the arsenic compounds in our laboratories, and provided characterization information. On the basis of reaction yield, ease of synthesis and purification of product, safety considerations, and our experience, we recommend a method for the synthesis of each of these arsenic compounds. 相似文献
16.
Yijun Chen Qintie Lin Xiaoqing Wen Jin He Haoyu Luo Quanfa Zhong Libin Wu Jiaqi Li 《环境科学学报(英文版)》2023,35(3):14-25
Simultaneous elimination of As(Ⅲ) and Pb(Ⅱ) from wastewater is still a great challenge.In this work,an iron-sulfur codoped biochar (Fe/S-BC) was successfully fabricated in a simplified way and was applied to the remediate the co-pollution of As(Ⅲ) and Pb(Ⅱ).The positive enthalpy indicated that the adsorption in As-Pb co-pollution was an endothermic reaction.The mechanism of As(Ⅲ) removal could be illustrated by surface complexation,oxidation and precipitation.In addition to precipitation and com... 相似文献
17.
Profiles of and variations in aluminum species in PAC-MC used for the removal of blooming microalgae
Polyaluminum chloride modified clay (PAC-MC) is a safe and efficient red tide control agent that has been studied and applied worldwide. Although it is well known that the distribution of hydrolytic aluminum species in PAC affects its flocculation, little is known about the influence of particulars aluminum species on the microalgae removal efficiency of PAC-MC; this lack of knowledge creates a bottleneck in the development of more efficient MCs based on aluminum salts. The ferron method was used in this study to quantitatively analyze the distributions of and variations in different hydrolytic aluminum species during the process of microalgae removal by PAC-MC. The results showed that Ala, which made up 5%–20% of the total aluminum, and Alp, which made up 15%–55% of the total aluminum, significantly affected microalgae removal, with Pearson's correlation coefficients of 0.83 and 0.89, respectively. Most of the aluminum in the PAC-MC sank rapidly into the sediments, but the rate and velocity of settlement were affected by the dose of modified clay. The optimal dose of PAC-MC for precipitating microalgae was determined based on its aluminum profile. These results provide guidance for the precise application of PAC-MC in the control of harmful algal blooms. 相似文献
18.
Metal phthalocyanine has been extensively studied as a catalyst for degradation of carbamazepine (CBZ). However, metal phthalocyanine tends to undergo their own dimerization or polymerization, thereby reducing their activity points and affecting their catalytic properties. In this study, a catalytic system consisting of O-bridged iron perfluorophthalocyanine dimers (FePcF16-O-FePcF16), multi-walled carbon nanotubes (MWCNTs) and H2O2 was proposed. The results showed MWCNTs loaded with FePcF16-O-FePcF16 can achieve excellent degradation of CBZ with smaller dosages of FePcF16-O-FePcF16 and H2O2, and milder reaction temperatures. In addition, the results of experiments revealed the reaction mechanism of non-hydroxyl radicals. The highly oxidized high-valent iron-oxo (Fe(IV)=O) species was the main reactive species in the FePcF16-O-FePcF16/MWCNTs/H2O2 system. It is noteworthy that MWCNTs can improve the dispersion of FePcF16-O-FePcF16, contributing to the production of highly oxidized Fe(IV)=O. Then, the pathway of CBZ oxidative degradation was speculated, and the study results also provide new ideas for metal phthalocyanine-loaded carbon materials to degrade emerging pollutants. 相似文献
19.
Manjunatha Kempasiddaiah Vishal Kandathil Ramesh B. Dateer Mahiuddin Baidy Shivaputra A. Patil Siddappa A. Patil 《环境科学学报(英文版)》2021,33(3):189-204
In this paper, highly stable, powerful, and recyclable magnetic nanoparticles tethered N-heterocyclic carbene-palladium(II) ((CH3)3[email protected]3O4) as magnetic nanocatalyst was successfully synthesized from a simplistic multistep synthesis under aerobic conditions through easily available low-cost chemicals. Newly synthesized (CH3)3[email protected]3O4 magnetic nanocatalyst was characterized from various analytical tools and catalytic potential of the (CH3)3[email protected]3O4 magnetic nanocatalyst was studied for the catalytic reduction of toxic 4-nitrophenol (4-NP), hexavalent chromium (Cr(VI)), Methylene Blue (MB) and Methyl Orange (MO) at room temperature in aqueous media. UV-Visible spectroscopy was employed to monitor the reduction reactions. New (CH3)3[email protected]3O4 magnetic nanocatalyst exhibited excellent catalytic activity for the reduction of toxic environmental pollutants. Moreover, (CH3)3[email protected]3O4 magnetic nanocatalyst could be easily and rapidly separated from the reaction mixture with the help of an external magnet and recycled minimum five times in reduction of 4-NP, MB, MO and four times in Cr(VI) without significant loss of catalytic potential and remains stable even after reuse. 相似文献
20.
《环境科学学报(英文版)》2023,35(3):742-749
The concentrations and distributions of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) in the whole blood and meat of eight typical edible animals (chicken, donkey, horse, cattle, rabbit, sheep, duck, and pig) were illustrated. Total concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and PCBs (on a basis of liquid volume) in animal bloods were 142-484 pg/L and 46-62 ng/L, respectively. Total concentrations of PCDD/Fs and PCBs (on a basis of dry weight (dw) and lipid weight (lw)) in animal meat samples were 0.47-1090 pg/g dw (0.47-4513 pg/g lw) and 7.2-23 ng/g dw (10-776 ng/g lw), respectively. TEQs for both PCDD/Fs and PCBs in animal blood and meat samples were (67 ± 27) pg/L and (5.3 ± 14) pg/g dw (24 ± 56 pg/g lw), respectively. Besides, the dietary intakes of PCDD/Fs and PCBs were also estimated. Chicken and pig contributed more TEQs than other animals. Chicken contributed the most (95%) with high toxicity, followed by pig (3.4%) with high consumption. The dietary intake of chicken might pose risks to consumers who prefer to eat chicken products, who should comprehensively consider the essential nutrients and contaminants in food during dietary intake. 相似文献