共查询到20条相似文献,搜索用时 15 毫秒
1.
Ruina Zhang Zhihua Li Yali Zhang Zhenyu Hang Meng Lu Haiguang Wang Xingdong Gao 《环境科学学报(英文版)》2022,34(11):112-121
Respirogram technology has been widely applied for aerobic process, however, the response of respirogram to anoxic denitrification is still unclear. To reveal such response may help to design a new method for the evaluation of the performance of denitrification. The size distribution of flocs measured at different denitrification moments demonstrated a clear expansion of flocs triggered by denitrification, during which higher specific endogenous and quasi-endogenous respiration rates (SOURe and SOURq) were also observed. Furthermore, SOURq increases exponentially with the specific denitrification rate (SDNR), suggesting that there should be a maximum SDNR in conventional activated sludge systems. Based on these findings, an index Rq/t, defined as the ratio of quasi-endogenous (OURq) to maximum respiration rate (OURt), is proposed to estimate the denitrification capacity that higher Rq/t indicates higher denitrification potential, which can be readily obtained without complex measurement or analysis, and it offers a novel and promising respirogram-based approach for denitrification estimation and control by taking measures to extend anoxic time to maintain its value at a high level within a certain range. 相似文献
2.
《环境科学学报(英文版)》2023,35(3):568-581
In this study, the biochar (BC) produced from sawdust, sludge, reed and walnut were used to support sulfidation of nano-zero-valent-iron (S-nZVI) to enhance nitrate (-N) removal and investigate the impact on greenhouse gas emissions. Batch experiment results showed the S-nZVI/BCsawdust (2:1, 500), S-nZVI/BCsludge (2:1, 900), S-nZVI/BCreed (2:1, 700), and S-nZVI/BC walnut (2:1, 700) respectively improved -N removal efficiencies by 22%, 20%, 3% and 0.1%, and the selectivity toward N2 by 22%, 25%, 22% and 18%. S-nZVI uniformly loaded on BC provided electrons for the conversion of -N to N2 through Fe0. At the same time, FeSx layer was formed on the outer layer of ZVI in the sulfidation process to prevent iron oxidation, so as to improve the electrons utilization efficiency After adding four kinds of S-nZVI/BC into constructed wetlands (CWs), the -N removal efficiencies could reach 100% and the N2O emission fluxes were reduced by 24.17%-36.63%. And the average removal efficiencies of TN, COD, TP were increased by 21.9%, -16.5%, 44.3%, repectively. The increasing relative abundances of denitrifying bacteria, such as Comamonas and Simplicispira, suggested that S-nZVI/BC could also improve the process of microbial denitrification. In addition, different S-nZVI/BC had different effects on denitrification functional genes (narG, nirk, nirS and nosZ genes), methanotrophs (pmoA) and methanogenesis (mcrA). This research provided an effective method to improve -N removal and reduce N2O emission in CWs. 相似文献
3.
《环境科学学报(英文版)》2023,35(4):734-741
Bioaugmented sand filtration has attracted considerable attention because it can effectively remove contaminants in drinking water without additional chemical reagent addition. In this study, a synthesized chemical manganese dioxide (MnO2)-coated quartz sand (MnQS) and biogenic manganese oxide (BioMnOx) composite system was proposed to simultaneously remove typical pharmaceutical contaminants and Mn2+. We demonstrated a manganese-oxidizing bacterium, Pseudomonas sp. QJX-1, could oxidize Mn2+ to generate BioMnOx using humic acids (HA) as sole carbon source. The coaction of MnQS, QJX-1, and the generated BioMnOx in simultaneously removing caffeine and Mn2+ in the presence of HA was evaluated. We found a synergistic effect between them. MnQS and BioMnOx together significantly increased the caffeine removal efficiency from 32.8% (MnQS alone) and 21.5% (BioMnOx alone) to 61.2%. Meanwhile, Mn2+ leaked from MnQS was rapidly oxidized by QJX-1 to regenerate reactive BioMnOx, which was beneficial for continuous contaminant removal and system stability. Different degradation intermediates of caffeine oxidized by MnQS and BioMnOx were detected by LC-QTOF-MS analysis, which implied that caffeine was oxidized by a different pathway. Overall, this work promotes the potential application of bioaugmented sand filtration in pharmaceutical removal in the presence of natural organic matter in drinking water. 相似文献
4.
Microwave radiation has received extensive attention due to its significant thermal and non-thermal effects, and the development of MW-based denitrification in flue gas has become one of the most promising methods to avoid the defects of ammonia escape, high temperature and cost in traditional SCR. This review introduces the thermal and non-thermal effects of microwaves and divides MW-based denitrification methods into MW reduction and oxidation denitrification, systematically summarizes these denitrification methods, including MW discharge reduction, MW-induced catalytic reduction using active carbon, molecular sieves, metal oxides (transition metals, perovskites, etc.), MW-induced oxidation denitrification with and without additional oxidant, and discusses their removal pathway and mechanism. Finally, several research prospects and directions regarding the development of microwave-based denitrification methods are provided. 相似文献
5.
Cheng Liu Lijun Hou Min Liu Yanling Zheng Guoyu Yin Hongpo Dong Xia Liang Xiaofei Li Dengzhou Gao Zongxiao Zhang 《环境科学学报(英文版)》2020,32(7):91-97
Estuarine and intertidal wetlands are important sites for nitrogen transformation and elimination. However, the factors controlling nitrogen removal processes remain largely uncertain in the highly dynamic environments. In this study, continuous-flow experiment combined with 15N isotope pairing technique was used to investigate in situ rates of denitrification and anaerobic ammonium oxidation (anammox) and their coupling with nitrification in intertidal wetlands of the Yangtze Estuary. The measured rates varied from below the detection limit to 152.39 µmol N/(m2·hr) for denitrification and from below the detection limit to 43.06 µmol N/(m2·hr) for anammox. The coupling links of nitrogen removal processes with nitrification were mainly dependent on nitrate, organic carbon, sulfide, dissolved oxygen and ferric iron in the estuarine and intertidal wetlands. Additionally, it was estimated that the actual nitrogen removal processes annually removed approximately 5% of the terrigenous inorganic nitrogen discharged into the Yangtze Estuary. This study gives new insights into nitrogen transformation and fate in the estuarine and intertidal wetlands. 相似文献
6.
Xuwang Zhang Zhaojian Song Qidong Tang Minghuo Wu Hao Zhou Lifen Liu Yuanyuan Qu 《环境科学学报(英文版)》2021,33(3):373-381
Nitrogen-containing organic pollutants (quinoline, pyridine and indole) are widely distributed in coking wastewater, and bioaugmentation with specific microorganisms may enhance the removal of these recalcitrant pollutants. The bioaugmented system (group B) was constructed through inoculation of two aromatics-degrading bacteria, Comamonas sp. Z1 (quinoline degrader) and Acinetobacter sp. JW (indole degrader), into the activated sludge for treatment of quinoline, indole and pyridine, and the non-bioaugmented activated sludge was used as the control (group C). Both groups maintained high efficiencies (> 94%) for removal of nitrogen-containing organic pollutants and chemical oxygen demand (COD) during the long-term operation, and group B was highly effective at the starting period and the operation stage fed with raw wastewater. High-throughput sequencing analysis indicated that nitrogen-containing organic pollutants could shape the microbial community structure, and communities of bioaugmented group B were clearly separated from those of non-bioaugmented group C as observed in non-metric multidimensional scaling (NMDS) plot. Although the inoculants did not remain their dominance in group B, bioaugmentation could induce the formation of effective microbial community, and the indigenous microbes might play the key role in removal of nitrogen-containing organic pollutants, including Dokdonella, Comamonas and Pseudoxanthomonas. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis suggested that bioaugmentation could facilitate the enrichment of functional genes related to xenobiotics biodegradation and metabolism, probably leading to the improved performance in group B. This study indicated that bioaugmentation could promote the removal of nitrogen-containing organic pollutants, which should be an effective strategy for wastewater treatment. 相似文献
7.
The optimization of volume ratio (VAn/VA/VO) and nitrate recycling ratio (R) in a two-sludge denitrifying phosphorus removal (DPR) process of Anaerobic Anoxic Oxic-Moving Bed Biofilm Reactor (A2/O-MBBR) was investigated. The results showed that prolonged anaerobic retention time (HRTAn: 1.25→3.75 hr) exerted favorable effect on chemical oxygen demand (COD) removal (57.26%→73.54%), poly-β-hydroxyalkanoates (PHA) synthesis (105.70→138.12 mgCOD/L) and PO43? release (22.3→38.9 mg/L). However, anoxic retention time (HRTA) and R exhibited positive correlation with PHA utilization (43.87%-81.34%) and denitrifying phosphorus removal (DPR) potential (ΔNO3?/ΔPO43?: 0.57-1.34 mg/mg), leading to dramatical TN removal variations from 68.86% to 81.28%. Under the VAn/VA/VO ratio of 2:6:0, sludge loss deteriorated nutrient removals but the sludge bioactivity quickly recovered when the oxic zone was recovered. The sludge characteristic and microstructure gradually transformed under the dissolved oxygen (DO) control (1.0-1.5→1.5-2.0 mg/L), in terms of sludge volume index (SVI: 194→57 mL/gVSS), median-particle-size (D50: 99.6→300.5 μm), extracellular polymeric substances (EPS) (105.62→226.18 mg/g VSS) and proteins/polysaccharides (PN/PS) ratio (1.52→3.46). Fluorescence in situ hybridization (FISH) results showed that phosphorus accumulation organisms (PAOs) (mainly Cluster I of Accumulibacter, contribution ratio: 91.79%-94.10%) dominated the superior DPR performance, while glycogen accumulating organisms (GAOs) (mainly Competibacter, contribution ratio: 82.61%-86.89%) was responsible for deteriorative TN and PO43? removals. The optimal HRTA and R assembled around 5-6.5 hr and 300%-400% based on the PHA utilization and DRP performance, and the oxic zones also contributed to PO43? removal although it showed low dependence on DO concentration and oxic retention time (HRTO). 相似文献
8.
The multiple metal catalyst as a promising nanomaterial has shown excellent activity in the peroxymonosulfate (PMS) activation for pollutant degradation.However,the role of special sites and in-depth understanding of the PMS activation mechanism are not fully studied.In this study,a Cu-doped CoFe2O4nanocatalyst (0.5CCF) was synthesized by a sol-gel and calcination method,and used for PMS activation to remove Rhodamine B (RhB).The results showed that the Cu doping obviously ... 相似文献
9.
Yongxin Zhang Xuecheng Wu Yanping Yang Yue Gong Zhiwen Deng Ying Wang Weihong Wu Chenghang Zheng 《环境科学学报(英文版)》2023,35(1):446-459
Industrial development is an essential foundation of the national economy, but the industry is also the largest source of air pollution, of which power plants, iron and steel, building materials, and other industries emit large amounts of pollutants. Therefore, the Chinese government has promulgated a series of stringent emission regulations, and it is against this backdrop that research into air pollution control technologies for key industrial sectors is in full swing. In particular, during the 13th Five-Year Plan, breakthroughs have been made in pollution control technology for key industrial sectors. A multi-pollutant treatment technology system of desulfurization, denitrification, and dust collection, which applies to key industries such as power plants, steel, and building materials, has been developed. High-performance materials for the treatment of different pollutants, such as denitrification catalysts and desulfurization absorbers, were developed. At the same time, multi-pollutant synergistic removal technologies for flue gas in various industries have also become a hot research topic, with important breakthroughs in the synergistic removal of NOx, SOx, and Hg. Due to the increasingly stringent emission standards and regulations in China, there is still a need to work on the development of multi-pollutant synergistic technologies and further research and development of synergistic abatement technologies for CO2 to meet the requirements of ultra-low emissions in industrial sectors. 相似文献
10.
Salinization in estuarine wetlands significantly alters the balance between their nitrogen (N) removal and retention abilities but these processes have not yet been characterized effectively. In the present study, the potential rates of sediment denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) were mapped using N isotope tracing methods along salinity gradients across the Yellow River Delta wetland (YRDW) in China. The contribution of anammox to total dissimilatory N transformations in YRDW was merely 6.8%, whereas denitrification and DNRA contributed 52.3% and 40.9%, respectively. The potential rate of denitrification (5.82 μmol/kg/h) decreased significantly along salinity gradients and markedly exceeded DNRA potential rate (2.7 μmol/kg/h) in fresh wetlands, but was lower than that of DNRA in oligohaline wetlands (3.06 and 3.18 μmol/kg/h, respectively). Moreover, a significantly positive relationship between salinity and DNRA/denitrification was obeserved, indicating that increased salinity may favor DNRA over denitrification. Furthermore, total sulfur (TS) content and ratio of total organic carbon to total nitrogen (C/N) increased with the salinity gradient and showed evident positive relationships with the DNRA/denitrification ratio. In this study, we proved that increased salinization resulted in the dominance of DNRA over denitrification, possible through the addition of S and alteration of the C/N in estuarine wetlands, leading to increased N retention in estuarine wetlands during salinization, which would enhance the eutrophication potential within wetlands and in downstream ecosystems. 相似文献
11.
Hao Jiang Wenjing Liu Jiangyi Zhang Li Zhou Xiaode Zhou Ke Pan Tong Zhao Yuchen Wang Zhifang Xu 《环境科学学报(英文版)》2020,32(7):98-108
Nitrogen pollution is a serious environmental issue in the Danjiangkou Reservoir region(DRR),the water source of the South-to-North Water Diversion Project of China.In this research,seasonal surveys and a bi-weekly time series survey were conducted in the Qihe River Basin,one of the most densely populated agricultural basins in the DRR.Hydrochemical compositions (NO3Cl),dual isotopes (δD-H2O,δ18O-H2O,δ15N-NO3-,and δ 相似文献
12.
Ebrahim Mahmoudi Sepehr Azizkhani Abdul Wahab Mohamma Law Yong Ng Abdelbaki Benamor Wei Lun Ang Muneer Ba-Abbad 《环境科学学报(英文版)》2020,32(12):151-160
Graphene oxide is a very high capacity adsorbent due to its functional groups and π?π interactions with other compounds. Adsorption capacity of graphene oxide, however, can be further enhanced by having synergistic effects through the use of mixed-matrix composite. In this study, silica-decorated graphene oxide (SGO) was used as a high-efficiency adsorbent to remove Congo red (CR) and Cadmium (II) from aqueous solutions. The effects of solution initial concentration (20 to 120 mg/l), solution pH (pH 2 to 7), adsorption duration (0 to 140 min) and temperature (298 to 323 K) were measured in order to optimize the adsorption conditions using the SGO adsorbent. Morphological analysis indicated that the silica nanoparticles could be dispersed uniformly on the graphene oxide surfaces. The maximum capacities of adsorbent for effective removal of Cd (II) and CR were 43.45 and 333.33 mg/g based on Freundlich and Langmuir isotherms, respectively. Langmuir and Freundlich isotherms displayed the highest values of Qmax for CR and Cd (II) adsorption in this study, which indicated monolayer adsorption of CR and multilayer adsorption of Cd (II) onto the SGO, respectively. Thermodynamic study showed that the enthalpy (ΔH) and Gibbs free energy(ΔG) values of the adsorption process for both pollutants were negative, suggesting that the process was spontaneous and exothermic in nature. This study showed active sites of SGO (π-π, hydroxyl, carboxyl, ketone, silane-based functional groups) contributed to an enormous enhancement in simultaneous removal of CR and Cd (II) from an aqueous solution, Therefore, SGO can be considered as a promising adsorbent for future water pollution control and removal of hazardous materials from aqueous solutions. 相似文献
13.
When wood-based activated carbon was tailored with quaternary ammonium/epoxide (QAE) forming compounds (QAE-AC), this tailoring dramatically improved the carbon's effectiveness for removing perfluorooctanoic acid (PFOA) from groundwater. With favorable tailoring, QAE-AC removed PFOA from groundwater for 118,000 bed volumes before half-breakthrough in rapid small scale column tests, while the influent PFOA concentration was 200 ng/L. The tailoring involved pre-dosing QAE at an array of proportions onto this carbon, and then monitoring bed life for PFOA removal. When pre-dosing with 1 mL QAE, this PFOA bed life reached an interim peak, whereas bed life was less following 3 mL QAE pre-dosing, then PFOA bed life exhibited a steady rise for yet subsequently higher QAE pre-dosing levels. Large-scale atomistic modelling was used herein to provide new insight into the mechanism of PFOA removal by QAE-AC. Based on experimental results and modelling, the authors perceived that the QAE's epoxide functionalities cross-linked with phenolics that were present along the activated carbon's graphene edge sites, in a manner that created mesopores within macroporous regions or created micropores within mesopores regions. Also, the QAE could react with hydroxyls outside of these pore, including the hydroxyls of both graphene edge sites and other QAE molecules. This latter reaction formed new pore-like structures that were external to the activated carbon grains. Adsorption of PFOA could occur via either charge balance between negatively charged PFOA with positively charged QAE, or by van der Waals forces between PFOA's fluoro-carbon tail and the graphene or QAE carbon surfaces. 相似文献
14.
Nitrate (NO3−) has been the dominant ion of secondary inorganic aerosols (SIAs) in PM2.5 in North China. Tracking the formation mechanisms and sources of particulate nitrate are vital to mitigate air pollution. In this study, PM2.5 samples in winter (January 2020) and in summer (June 2020) were collected in Jiaozuo, China, and water-soluble ions and (δ15N, δ18O)-NO3− were analyzed. The results showed that the increase of NO3− concentrations was the most remarkable with increasing PM2.5 pollution level. δ18O-NO3− values for winter samples (82.7‰ to 103.9‰) were close to calculated δ18O-HNO3 (103‰ ± 0.8‰) values by N2O5 pathway, while δ18O-NO3− values (67.8‰ to 85.7‰) for summer samples were close to calculated δ18O-HNO3 values (61‰ ± 0.8‰) by OH oxidation pathway, suggesting that PM2.5 nitrate is largely from N2O5 pathway in winter, while is largely from OH pathway in summer. Averaged fractional contributions of PN2O5+H2O were 70% and 39% in winter and summer sampling periods, respectively, those of POH were 30% and 61%, respectively. Higher δ15N-NO3− values for winter samples (3.0‰ to 14.4‰) than those for summer samples (-3.7‰ to 8.6‰) might be due to more contributions from coal combustion in winter. Coal combustion (31% ± 9%, 25% ± 9% in winter and summer, respectively) and biomass burning (30% ± 12%, 36% ± 12% in winter and summer, respectively) were the main sources using Bayesian mixing model. These results provided clear evidence of particulate nitrate formation and sources under different PM2.5 levels, and aided in reducing atmospheric nitrate in urban environments. 相似文献
15.
Hanen Bessaies Sidra Iftekhar Muhammad Bilal Asif Jamel Kheriji Chaker Necibi Mika Sillanpää Bechir Hamrouni 《环境科学学报(英文版)》2021,33(4):301-315
A series of novel adsorbents composed of cellulose (CL) with Ca/Al layered double hydroxide (CCxA; where x represent the Ca/Al molar ratio) were prepared for the adsorption of antimony (Sb(V)) and fluoride (F?) ions from aqueous solutions. The CCxA was characterized by Fourier-transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET), elemental analysis (CHNS/O), thermogravimetric analysis (TGA-DTA), zeta potential, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) analysis. The effects of varying parameters such as dose, pH, contact time, temperature and initial concentration on the adsorption process were investigated. According to the obtained results, the adsorption processes were described by a pseudo-second-order kinetic model. Langmuir adsorption isotherm model provided the best fit for the experimental data and was used to describe isotherm constants. The maximum adsorption capacity was found to be 77.2 and 63.1 mg/g for Sb(V) and F?, respectively by CC3A (experimental conditions: pH 5.5, time 60 min, dose 15 mg/10 mL, temperature 298 K). The CC3A nanocomposite was able to reduce the Sb(V) and F? ions concentration in synthetic solution to lower than 6 μg/L and 1.5 mg/L, respectively, which are maximum contaminant levels of these elements in drinking water according to WHO guidelines. 相似文献
16.
Qingwei Wang Kaizhong Li Hui Liu Qingzhu Li Wenming Yao Lanyan Wu Shuimei Li 《环境科学学报(英文版)》2022,34(10):125-134
To meet the challenges posed by global arsenic water contamination, the MgAlMn-LDHs with extraordinary efficiency of arsenate removal was developed. In order to clarify the enhancement effect of the doped-Mn on the arsenate removal performance of the LDHs, the cluster models of the MgAlMn-LDHs and MgAl-LDHs were established and calculated by using density functional theory (DFT). The results shown that the doped-Mn can significantly change the electronic structure of the LDHs and improve its chemical activity. Compared with the MgAl-LDHs that without the doped-Mn, the HOMO-LUMO gap was smaller after doping. In addition, the -OH and Al on the laminates were also activated to improve the adsorption property of the LDHs. Besides, the doped-Mn existed as a novel active site. On the other hand, the MgAlMn-LDHs with the doped-Mn, the increased of the binding energy, as well as the decreased of the ion exchange energy of interlayer Cl−, making the ability to arsenate removal had been considerably elevated than the MgAl-LDHs. Furthermore, there is an obvious coordination covalent bond between arsenate and the laminates of the MgAlMn-LDHs that with the doped-Mn. 相似文献
17.
Jialiang Zuo Lina Xu Jianlin Guo Shengjun Xu Shuanglong Ma Cancan Jiang Dongmin Yang Danhua Wang Xuliang Zhuang 《环境科学学报(英文版)》2023,35(5):30-41
With the rapid expansion of livestock production, the amount of livestock wastewater accumulated rapidly. Lack of biodegradable organic matter makes denitrification of livestock wastewater after anaerobic digestion more difficult. In this study, Myriophyllum aquaticum constructed wetlands(CWs) with efficient nitrogen removal performance were established under different carbon/nitrogen(C/N) ratios. Analysis of community composition reveals the change of M. aquaticum CWs in microbial community str... 相似文献
18.
Nicholas J. Gingerysty Charles A. Odame-Ankrah Nick Jordan Hans D. Osthoff 《环境科学学报(英文版)》2021,33(9):184-193
The reference method to quantify mixing ratios of the criteria air pollutant nitrogen dioxide (NO2) is NO-O3 chemiluminescence (CL), in which mixing ratios of nitric oxide (NO) are measured by sampling ambient air directly, and mixing ratios of NOx (= sum of NO and NO2) are measured by converting NO2 to NO using, for example, heated molybdenum catalyst or, more selectively, photolytic conversion (P-CL). In this work, the nitrous acid (HONO) interference in the measurement of NO2 by P-CL was investigated. Results with two photolytic NO2 converters are presented. The first used radiation centered at 395 nm, a wavelength region commonly utilized in P-CL. The second used light at 415 nm, where the overlap with the HONO absorption spectrum and hence its photolysis rate are less. Mixing ratios of NO2, NOx and HONO entering and exiting the converters were quantified by Thermal Dissociation Cavity Ring-down Spectroscopy (TD-CRDS). Both converters exhibited high NO2 conversion efficiency (CFNO2; > 90%) and partial conversion of HONO. Plots of CF against flow rate were consistent with photolysis frequencies of 4.2 s-1 and 2.9 s-1 for NO2 and 0.25 s-1 and 0.10 s?1 for HONO at 395 nm and 415 nm, respectively. CFHONO was larger than predicted from the overlap of the emission and HONO absorption spectra. The results imply that measurements of NO2 by P-CL marginally but systematically overestimate true NO2 concentrations, and that this interference should be considered in environments with high HONO:NO2 ratios such as the marine boundary layer or in biomass burning plumes. 相似文献
19.
《环境科学学报(英文版)》2023,130(8):212-222
Methane has been demonstrated to be a feasible substrate for electricity generation in microbial fuel cells (MFCs) and denitrifying anaerobic methane oxidation (DAMO). However, these two processes were evaluated separately in previous studies and it has remained unknown whether methane is able to simultaneously drive these processes. Here we investigated the co-occurrence and performance of these two processes in the anodic chamber of MFCs. The results showed that methane successfully fueled both electrogenesis and denitrification. Importantly, the maximum nitrate removal rate was significantly enhanced from (1.4 ± 0.8) to (18.4 ± 1.2) mg N/(L·day) by an electrogenic process. In the presence of DAMO, the MFCs achieved a maximum voltage of 610 mV and a maximum power density of 143 ± 12 mW/m2. Electrochemical analyses demonstrated that some redox substances (e.g. riboflavin) were likely involved in electrogenesis and also in the denitrification process. High-throughput sequencing indicated that the methanogen Methanobacterium, a close relative of Methanobacterium espanolae, catalyzed methane oxidation and cooperated with both exoelectrogens and denitrifiers (e.g., Azoarcus). This work provides an effective strategy for improving DAMO in methane-powered MFCs, and suggests that methanogens and denitrifiers may jointly be able to provide an alternative to archaeal DAMO for methane-dependent denitrification. 相似文献
20.
《环境科学学报(英文版)》2023,130(8):65-74
Heterogeneous reaction of NO2 with mineral dust aerosol may play important roles in troposphere chemistry, and has been investigated by a number of laboratory studies. However, the influence of mineralogy on this reaction has not been well understood, and its impact on aerosol hygroscopicity is not yet clear. This work investigated heterogeneous reactions of NO2 (∼10 ppmv) with K-feldspar, illite, kaolinite, montmorillonite and Arizona Test Dust (ATD) at room temperature as a function of relative humidity (<1% to 80%) and reaction time (up to 24 hr). Heterogeneous reactivity towards NO2 was low for illite, kaolinite, montmorillonite and ATD, and uptake coefficients of NO2, γ(NO2), were determined to be around or smaller than 1×10−8; K-feldspar exhibited higher reactivity towards NO2, and CaCO3 is most reactive among the nine mineral dust samples considered in this and previous work. After heterogeneous reaction with NO2 for 24 hr, increase in hygroscopicity was nearly insignificant for illite, kaolinite and montmorillonite, and small but significant for K-feldspar; in addition, large increase in hygroscopicity was observed for ATD, although the increase in hygroscopicity was still smaller than CaCO3. 相似文献