首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mechanisms initiating trypsinogen secretion were studied in laboratory reared herring larvae (Clupea harengus L.) exposed to physical and chemical stimuli. Pancreatic secretion of trypsinogen was quantified for each stimulus type as the increase above pre-stimulus level of intestinal trypsin content. Larval prey types were: nauplii, copepodites or adult Acartia tonsa, small polystyrene spheres (diameter 94 m), small (diameter 79 m) or large (diameter 170 m) polystyrene-latex spheres. Intestinal trypsin content can be expressed as a function of two variables: meal size and content of pancreatic trypsinogen. Trypsinogen secretion increases with different prey items in the order: small spheres, nauplii and copepodites. Larvae which eat large spheres secrete more enzyme than if fed small spheres but trypsinogen secretion is similar in fish larvae fed copepodites and large spheres. The fact that the size of non-biodegradable particles exerts a major control over trypsinogen secretion suggests neural — as opposed to chemically mediated — initiation of secretion. A cephalic phase of secretory stimulation could not be demonstrated during swallowing of copepods or exposure for 2 to 3 h to compounds which leak from live copepodites. As cephalic and gastric phases of secretory stimulation are absent, initiation of trypsinogen secretion must take place in the intestine. Larval herring retain trypsin in the intestine. Ca. 4.5 h after a meal, 3/4 of the enzyme is located in the intestinal fluid, presumably available for hydrolysis of subsequent meals, and the high proportion (ca. 25%) of the pancreatic trypsinogen content which is secreted for copepodite prey may thus not be energetically wasteful for the larvae.  相似文献   

2.
In order to assess possible effects of a transitory, low food supply on later development, three groups of Clyde herring larvae (Clupea harengus L.) were exposed in 1989 to different feeding regimes immediately after yolk resorption. Group 1 received a high daily ration of 80 copepods larvae–1 for 31 d, Group 2 a low daily ration of 15 copepods larva–1 for 10 d followed by a high ration (80 copepods larva–1) for 21 d and Group 3 a low ration of 15 to 20 copepods larva–1 for 31 d. After 31 d of feeding, digestive capacity, expressed as the sum of trypsin and trypsinogen, was markedly reduced in Group 2 compared to Group 1, while Group 3 had an even lower digestive capacity. After the switch from low to high ration Group 2 exhibited compensatory growth and caught up with Group 1 both in standard length and content of soluble protein. Group 3 had the lowest growth rates. Mortality was equal in Groups 1 and 2, while Group 3 showed an excess mortality of 40% of the start population. Although Group 2 larvae had caught up with Group 1 in growth at the end of the study, content of trypsin and trypsinogen in Group 2 was only half of that found in Group 1. Thus, comparing effects of a short period of food limitation on future growth, mortality and content of digestive enzymes, the study indicates content of trypsin and trypsinogen to be the most sensitive variable for detection of food limitation in the early stages of exogenous feeding.  相似文献   

3.
Escape speeds of marine fish larvae during early development and starvation   总被引:1,自引:0,他引:1  
Response rates to tactile stimulation and subsequent escape speeds were measured using a video-recording system during early development and starvation of fish larvae. The species studied included the yolk-sac larvae of Clyde and Baltic herring (Clupea harengus L.), cod (Gadus morhua L.), flounder (Platichthys flesus L.) and older larvae of Clyde herring. The proportion of larvae responding (response rate) was initially about 20 to 25% in herring and 35 to 40% in cod and flounder using a probe, but about 70 to 80% using the sucking action of a pipette in all species except flounder. Both response rates and escape speeds (mean and maximum) tended to peak 1 to 2 d before the PNR (point-of-no-return, when 50% of larvae are too weak to feed), then decreased slowly during further starvation. An inter-species comparison showed that the highest recorded mean escape speeds (measured over a period of 200 ms) and highest maximum escape speeds (over 20 ms) ranged from 5.7 to 8.6 BL/s (body lengths/s) and 12.1 to 16.1 BL/s, respectively. The larvae made directional responses away from the stimulus only when they developed and reached the feeding stage.  相似文献   

4.
The time periods from exhausion of the yolk to the age of irreversible starvation for Pacific herring Clupea harengus pallasi larvae were 8.5, 7.0 and 6.0 d at 6°, 8° and 10°C, respectively. These periods are within the range perviously measured for Atlantic herring larvae and other temperature zone fish species; they are long compared to the periods for tropical species. The variation in the length of this period is due almost entirely to temperature; the natural logarithm of the time period from fertilization to irreversible starvation is highly correlated (r=0.91) with the mean rearing temperature for 25 species of pelagic marine fish larvae. The rates of growth and mortality, measured for 26 experimental populations of Pacific herring larvae reared at 6°, 8° and 10°C and ten ages of delayed first feeding, decreased and increased, respectively with increasing age of first feeding and increasing temperature. These rates, adjusted for the effects of rearing conditions, were compared with the rates for natural populations of herring larvae. Growth is generally faster in the sea than in experimental enclosures. Two of the eleven estimates of natural mortality rate were high enough to indicate possible catastrophic mass starvation. This is consistent with Hjort's critical period concept of year class formation and it suggests that mass starvation occurs in 18 to 36% of the natural populations of first feeding herring larvae.  相似文献   

5.
Trypsin and its proform trypsinogen were quantified by radioimmunoassay in herring (Clupea harengus L.) larvae subjected to different prey densities. During the first weeks of larval life, the enzyme content fluctuated in a threephased pattern. Yolk resorption (Phase 1) was characterized by an increase in enzyme. During the first few days after yolk resorption (Phase 2), there was a sharp decline in enzyme. Older larvae (Phase 3) exhibited a second period of intensive enzyme synthesis. Amounts of trypsin in intestines of feeding larvae were analysed. At first feeding, a basal level of gut enzyme of approximately 30ng was recorded, and the amount of additional enzyme secreted from the pancreatic tissue into the intestine appeared to be dependent upon the numbers of prey items ingested. The enzyme-substrate ratio in the intestine was approximately 1 to 4. Prey availability affected amount of trypsinogen. Larvae experiencing a high prey density had an approximately two-fold higher specific enzyme content in Phase 2 compared to larvae exposed to a low prey density. A proposed nutritional strategy for first feeding herring larvae is discussed.  相似文献   

6.
Following yolk resorption, laboratory-reared larval Baltic herring (Clupea harengus L.) were exposed to two sequences of food restriction for 5 d and re-alimentation for 10 d. Comparisons regarding larval growth (standard length and content of water-soluble protein), mortality and content of the sum of trypsin and trypsinogen were made with larvae at a continuous high ration. Larvae exposed to varying prey abundance grew less in length than the control, and during the second high-ration period (Day 22 to 32) growth in length ceased. From the first low-ration period onwards, the content of water-soluble protein in these larvae was lower than that of the control larvae, and the survival rate of the low-high ration group was 59% compared to 77% in the larvae at a continuous high ration. In contrast, the effects of varying food availability were minor on larval content of trypsin and trypsinogen. Results are compared with previous findings in larval Clyde herring, and the effects of larval stock and timing and duration of food restriction on larval growth performance are discussed.  相似文献   

7.
Short-term changes in feeding and digestion by the copepodCalanus pacificus   总被引:3,自引:0,他引:3  
The planktonic marine copepodCalanus pacificus exhibits an enhanced feeding rate, or hunger response, when exposed to food following short periods of starvation. In a scries of laboratory experiments with copepods collected from the main basin of Puget Sound, Washington, during 1982 and 1984, we measured maximum ingestion rate, assimilation efficiency, and digestive enzyme activity to determine the time scales over which the feeding behavior ofC. pacificus responds to increases in food. These laboratory results were then compared to field studies of diel fluctuations in digestive enzymes and gut fluorescence ofC. pacificus in Dabod Bay, a fjord of Puget Sound, during September, 1980, and the closely relatedC. marshallae off the Washington coast, in August, 1981. Laboratory experiments demonstrated that the hunger response ofC. pacificus lasts approximately 6 h before ingestion rate returns to a steady state level of about one-half maximum. On the order of 12h of starvation were required to induce the maximum ingestion rate of the hunger response. Digestive enzyme activities did not change over these time scales. Assimilation efficiency peaked within a few hours of the onset of feeding, with low initial rates possibly related to the period of starvation prior to feeding. These results were consistent with diel patterns observed in the field. The hunger response ofC. pacificus appears to be controlled by processes within the gut, and our results are discussed in relation to recent studies of the digestive processes of calanoid copepods.Contribution No. 1772 from the School of Oceanography, University of Washington, Seattle, Washington 98195, USA  相似文献   

8.
Autumn-spawned North Sea herring larvae (Clupea harengus L.) were released in two outdoor mesocosms of 2500 m3 (A) and 4000 m3 (B). The mesocosms were monitored for temperature, salinity, oxygen, chlorophyll a, zooplankton and herring larvae abundance. The density of suitable prey for first feeding larvae (mainly copepod nauplii) was initially low in Mesocosm A (<0.11-1) compared to in Mesocosm B (>11-1). Half-way through the experiment the situation was reversed, with higher densities of prey in Mesocosm A (>31-1) as compared to Mesocosm B (11-1). The average temperature declined steadily in both mesocosms from 18°C at release to 11–12°C by the end of the experiment 60 d later. The RNA:DNA values of individual herring larvae were related to protein growth rates and temperature adjusted according to Buckley (1984). A corresponding DNA growth index (Gdi) was given as: Gdi=0.68 TEMP+3.05 RNA:DNA-9.92. The RNA:DNA based growth indices were significantly correlated with other somatic growth estimates. The average estimated protein growth rate in the two mesocosms followed the same temporal pattern as the somatic growth rate, but with a lag of 2 d or more. Residual analysis of the regression of ln RNA versus ln DNA also showed the same temporal pattern as the RNA:DNA ratios, but the shift in condition as estimated by this method occurred more in synchrony with the other somatic growth measures. Larvae in Mesocosm A had RNA:DNA values similar to the starvation control kept in the laboratory the first days after release, confirming that larvae in Mesocosm A initially were in poor nutritional condition. On the other hand, the majority of the herring from Mesocosm B were characterised as starving or in poor nutritional condition towards the end of the experiment. The assessment of growth and nutritional condition were in accordance with independent survival estimates which suggested that the majority of the total mortality occurred during the first 15 d in Mesocosm A and there-after in Mesocosm B.  相似文献   

9.
A recent hypothesis in the zooplankton literature states that zooplankton acclimate to ambient food concentrations such that higher digestive enzyme activities and, consequently, higher maximum ingestion rates are achieved at higher food levels. To test this hypothesis, adult female Calanus pacificus, collected from the main basin of Puget Sound, Washington, USA, in August 1979 and May 1982, were conditioned for 2 wk at different concentrations of the diatom Thalassiosira weissflogii (=fluviatilis). Ingestion rates and the activity of the digestive enzymes laminarinase, maltase, and cellobiase were measured periodically during acclimation and in a block-designed feeding experiment at the end of acclimation. Consistent with the hypothesis, maximum ingestion rate and digestive enzyme activity were positively correlated. However, in contrast to the hypothesized mechanism, this result arose because both maximum ingestion rate and digestive enzyme activity were negatively correlated with food concentration during acclimation. The enhanced ingestion of copepods following long-term (12 to 14 d) acclimation to low food is similar to that previously described for short-term (e.g. 1 d) starvation. It might be energetically optimal for copepods experiencing a patchy food environment to maintain higher levels of digestive enzymes at low food concentrations in order to exploit high concentrations of food when encountered.  相似文献   

10.
Recruitment of capelin in the Barents Sea fail when juvenile herring and cod are abundant and the potential for feeding competition of wild sympatric capelin and herring larvae and small cod juveniles were investigated. The frequency of gut evacuation after capture of capelin larvae were also studied in mesocosms. Small capelin larvae (<35 mm length) fed on small prey including phytoplankton, invertebrate eggs and nauplii, bivalves, other invertebrate larvae and small copepods. Calanus copepodites were only observed in large capelin larvae (>26 mm length). Calanus copepodites were the major food sources for contemporary herring larvae (25–35 mm length) and Calanus and euphausiids were the major prey for small juvenile herring (37–60 mm length) and cod (18–40 mm length). Capelin larvae reared in mesocosms evacuated the guts shortly after capture. Capelin larvae had a smaller mouth and fed on smaller prey than herring and cod of the same length. This implies that the small capelin larvae, in contrast to sympatric small herring and cod, are not tightly linked to the food chain involving Calanus and euphausiids. Thus, exploitative competition between capelin larvae and planktivorous fish that rely on Calanus and euphausiids in the Barents Sea may be relaxed.  相似文献   

11.
In 1986, at the Danish Institute of Fisheries and Marine Research, Denmark, Clupea harengus L. larvae from three different herring stocks were offered either non-biodegradable polystyrene spheres, nauplii and copepodites of Acartia tonsa or Artemia ssp. nauplii. Ingestion of polystyrene spheres induced trypsin secretion to a higher level than in non-feeding fish. Larvae ingesting live food of the same width as the polystyrene spheres exhibited the highest trypsin content in the intestines. Mechanisms responsible for the regulation of pancreatic enzyme secretion are discussed.  相似文献   

12.
Autumn-spawned North Sea herring larvae (Clupea harengus L.) were released in two outdoor mesocosms of 2500 m3 (A) and 4000 m3 (B). The mesocosms were monitored for temperature, salinity, oxygen, chlorophyll a, zooplankton and herring larvae abundance. The density of suitable prey for first feeding larvae (mainly copepod nauplii) was initially low in Mesocosm A (<0.11-1) compared to in Mesocosm B (>11-1). Half-way through the experiment the situation was reversed, with higher densities of prey in Mesocosm A (>31-1) as compared to Mesocosm B (~11-1). The average temperature declined steadily in both mesocosms from 18°C at release to 11–12°C by the end of the experiment 60 d later. The RNA:DNA values of individual herring larvae were related to protein growth rates and temperature adjusted according to Buckley (1984). A corresponding DNA growth index (Gdi) was given as: Gdi=0.68 TEMP+3.05 RNA:DNA-9.92. The RNA:DNA based growth indices were significantly correlated with other somatic growth estimates. The average estimated protein growth rate in the two mesocosms followed the same temporal pattern as the somatic growth rate, but with a lag of 2 d or more. Residual analysis of the regression of ln RNA versus ln DNA also showed the same temporal pattern as the RNA:DNA ratios, but the shift in condition as estimated by this method occurred more in synchrony with the other somatic growth measures. Larvae in Mesocosm A had RNA:DNA values similar to the starvation control kept in the laboratory the first days after release, confirming that larvae in Mesocosm A initially were in poor nutritional condition. On the other hand, the majority of the herring from Mesocosm B were characterised as starving or in poor nutritional condition towards the end of the experiment. The assessment of growth and nutritional condition were in accordance with independent survival estimates which suggested that the majority of the total mortality occurred during the first 15 d in Mesocosm A and there-after in Mesocosm B.  相似文献   

13.
D. Margulies 《Marine Biology》1993,115(2):317-330
The nutritional condition of first-feeding and late larval/early juvenile scombrids was investigated in waters of the northwestern Panamá Bight from May through early November 1988. Wild-caught larvae and juveniles of three taxa, black skipjack tuna (Euthynnus lineatus), bullet and/or frigate tuna (Auxis spp.) and sierra (Scomberomorus sierra), were examined histologically to determine nutritional condition. The incidence of malnourishment in wild-caught preflexion (first feeding—prior to notochord flexion) larvae of all taxa was high. Starvation rates for E. lineatus and Auxis spp. preflexion larvae ranged from 62 to 63% d-1, while the percentage of larvae actually dying of starvation was estimated at 41 to 43% d-1. The nutritional point-of-no-return for preflexion larvae was estimated at 1 to 2 d maximum. The cellular condition of liver hepatocytes, particularly the relative amount of vacuolation related to storage of glycogen and lipid, proved to be a sensitive indicator of nutritional condition. In laboratory trials, late larval (postflexion) and early juvenile black skipjack exhibited a nutritional point-of-no-return of 2 to 3 d. Although postflexion larvae were moderately vulnerable to malnourishment in laboratory trials, <13% of wild-caught postflexion larvae exhibited even mild nutritional stress, and no postflexion larvae or juveniles showed signs of severe malnourishment. This pattern of starvation incidence suggests that tropical scombrids undergo stagespecific starvation mortality. Preflexion larvae can suffer significant daily losses due to starvation, while postflexion larvae and early juveniles seem to experience a rapid improvement in feeding ability and/or food availability.  相似文献   

14.
Enzymatic activity and quantity of the protease trypsin were measured in individual herring larvae (Clupea harengus L.). The enzymatic activity assay was done using a fluorescence technique, and a radioimmunoassay was used for quantification of trypsin. The results are compared and the differences between the techniques discussed. Both methods gave similar results, as high or low values in trypsin quantity were reflected in high or low values of tryptic activity. Quantity and activity were linearly and positively correlated, but small differences between methods were found at the lowest detection limits. Both techniques reflect high variability between individual larvae.  相似文献   

15.
H. Ishii 《Marine Biology》1990,105(1):91-98
In situ diel variations in gut pigment contents of neritic (Acartia omorii andPseudocalanus minutus) and oceanic copepods (Calanus plumchrus andC. cristatus) were analyzed.A. omorii andP. minutus were sampled in Onagawa Bay on the east coast of Japan in May and August 1987, andC. plumchrus andC. cristatus were sampled in the Bering Sea in June 1986. Gut pigments were generally high at night, and bimodal feeding rhythms were observed in all species. The first peak of gut pigments occurred between sunset and midnight and was followed by a midnight decrease in gut pigment levels, resulting in eventual evacuation of the gut. The second peak was observed a few hours after sunrise. Incubation experiments indicated that ingestion rates of starved copepods were higher than those of acclimated copepods. This phenomenon was most notable at high food concentrations. Gut pigments of starved copepods rapidly increased after exposure to high concentrations of culturedThalassiosira decipiens. These findings suggest that in situ feeding behavior of herbivorous copepods includes periods of cessation or reduction in feeding during the night, and consequently, feeding activity is periodically enhanced with starvation. Starvation enhanced feeding behavior is most obvious in the large oceanic species,C. plumchrus andC. cristatus and is not distinct in small coastal species such asA. omorii.  相似文献   

16.
The utilization and fate of nitrogen in larvae of plaice (Pleuronectes platessa), blenny (Blennius pavo) and herring (Clupea harengus), from the stage of first-feeding to metamorphosis, was examined under laboratory conditions. Rates of ammonia excretion, primary amine defaecation, and growth in terms of protein-nitrogen were monitored throughout larval life. Data were used to calculate daily ration, the coefficient of nitrogen utilization (absorption efficiency), and gross and net growth efficiencies. The developmental pattern of nitrogen balance was similar for plaice and blenny larvae. These species showed increasing growth efficiency (k1: 55 to 80%) with decreasing weight-specific waste nitrogen losses with age. Absorption efficiencies. were high (83 to 98%) in plaice and blenny larvae, and tended to increase with development in the former species. Ration relative to body weight decreased with growth in both species. Herring larval development, although at a slower rate than blenny and plaice, appeared normal up to 33 d, after which high mortality occurred. Absorption efficiency in this species tended to decline (83 to 43%) with age, until metabolic costs exceeded the absorbed ration and growth ceased. Artemia sp. nauplii proved a suitable food source for the rearing of plaice and blenny larvae, but this diet may have long-term toxicity or deficiency effects on herring. Availability and density of food affected nitrogen balance in the larvae of all three species. Feeding stimulated the output of wastes in excretion and defaecation by a factor of up to ten times the 12-h non-feeding basal rates. Waste nitrogen output reached a peak some 2 to 3 h after commencement of feeding and returned slowly to the baseline in 5 to 10 h after cessation of feeding. There was an asymptotic increase in ration, ammonia output and growth of larvae as prey density increased. Ration saturated at a higher prey density (>4 prey ml-1) than either growth or excretion rate (1 prey ml-1). Thus the efficiency with which food is absorbed and utilized for growth must eventually decline in response to high prey density. The idea that larval fish are adapted to maximize ingestion and growth rate, rather than optimize growth efficiency and thus to respond to prey occurring in either low density or in occasional patches, is supported by these results.  相似文献   

17.
Effects of algal diet on digestive enzyme activity in Calanus helgolandicus   总被引:2,自引:0,他引:2  
Adult female Calanus helgolandicus were transferred, immediately after collection in the English Channel in June 1984, to two unialgal diets one of which, the flagellate Cryptomonas maculata, was rich in starch, while the other, the diatom Thalassiosira weissflogii, contained no starch. The activity of the digestive enzymes amylase, trypsin and laminarinase was measured in these two populations under foodsaturating conditions over an acclimation period of eight days. Ingestion rates were measured on a daily basis and the results confirmed, together with a constant level of body protein, that the experimental conditions were above the incipient limiting concentration. In the long-term (4 to 8 d), the activities of all three enzymes were significantly elevated in the C. maculata-fed copepods, whereas ingestion rates were lower than those on T. weissflogii. These results observed under food-saturating conditions indicate a compensatory mechanism between digestive enzymes and the substrate ingested. They are consistent with previous work on Artemia sp. suggesting that the rate of assimilation is a function of the digestive enzyme activity and ingestion rate. Enzyme activity exhibited differing shortterm responses (<48 h) on transfer to the two algal diets, which are interpreted in relation to the in situ activity of the field population.Communicated by J. Mauchline, Oban  相似文献   

18.
Omnivorous feeding behavior of the Antarctic krill Euphausia superba   总被引:5,自引:0,他引:5  
Feeding experiments were conducted at Palmer Station from December 1985 to February 1986 to examine the potential role of copepod prey as an alternative food source for Euphausia superba. Copepod concentration, copepod size, phytoplankton concentration, the duration of krill starvation and the volume of experimental vessels were altered to determine effects on ingestion and clearance rates. Krill allowed to feed on phytoplankton and copepods in 50-litre tubs showed greatly increased feeding rates relative to animals feeding in the much smaller volumes of water traditionally used for krill-feeding studies. Clearance rates on copepods remained constant over the range of concentrations offered, but clearance rates on phytoplankton increased linearly with phytoplankton concentration. Feeding rates increased when larger copepods were offered and when krill were starved for two weeks prior to experiments. Clearance rates of krill feeding on copepods were higher than, but not correlated with, their clearance rates on phytoplankton in the same vessel. E. superba may have a distinct mechanism for capturing copepods, perhaps through mechanoreception. Although our observed clearance rate of 1055 ml krill-1 h-1 indicates that krill can feed very efficiently on copepod prey, such feeding would meet less than 10% of their minimum metabolic requirements at the typical copepod concentrations reported for Antarctic waters. However, substantial energy could be gained if krill fed on the patches of high copepod concentrations occasionally reported during the austral summer, or if krill and copepods were concentrated beneath the sea ice during the winter or spring months. Our results, indicating efficient feeding on zooplankton and higher clearance rates on phytoplankton than previously believed, represent a step towards balancing the energy budget of E. superba in Antarctic waters.  相似文献   

19.
Scyphomedusae collected from Port Phillip Bay, Victoria, Australia, between 1984 and 1986, consumed a variety of zooplankton. The percentage composition of gut contents of Cyanea capillata (Linné) in order of decreasing importance was larvaceans 31%, cladocerans 29%, fish eggs 14%, copepods 11%, hydromedusae 9%, and ascidian tadpoles 3%. The percentage composition of gut contents of Pseudorhiza haeckeli Haacke was fish eggs 41%, copepods 33%, larvaceans 8%, cladocerans 4%, crab zoea 4%, and decapod larvae 1%. Both species of scyphomedusae showed strong positive selection for fish eggs and yolk-sac larvae, and negative selection for other prey items. When fish eggs were omitted from the selectivity analyses, C. capillata showed positive selection for amphipods, decapods, crab zoea, Podon spp., larvaceans and ascidian tadpoles, and negative selection for Evadne spp. and all copepod taxa. Pseudorhiza haeckeli showed positive selection for amphipods, decapod larvae, crab zoea and cladocerans, and negative selection for cirripede larvae, larvaceans and hydromedusae. Amongst copepods, P. haeckeli showed positive selection for calanoid and harpacticoid copepods and negative selection for cyclopoid copepods.  相似文献   

20.
A discrete dense patch of eggs and larvae of hoki (Macruronus novaezelandiae) within the hoki spawning grounds off Westland, New Zealand, was sampled to examine prey selectivity by larvae and to obtain estimates of larval mortality and growth. The patch was tracked using a free-drifting drogue, and surveys of the horizontal distribution of larvae before and after the patch study indicated that the drogue had successfully followed the patch. Modal analysis of the size-frequency distributions of hoki larvae revealed up to six cohorts within the patch at any one sampling time, and a growth rate of 0.21 mm standard length per day. The daily mortality coefficient for larvae within the patch was 0.19, although this is considered to be an overestimate. Differences in the mean length between cohorts suggest that hoki have a synchronised, diel spawning periodicity, and results of a simple cellular design model revealed that ten continuous days of spawning were required to yield the observed size structure of the hoki larvae population within the patch. Diet analysis of larvae in the patch showed that copepods of the genus Calocalanus are actively selected, and are especially important in the diet of early-stage larvae. Based on aspects of larval diet, morphology, and rates of mortality and growth, it is hypothesised that hoki larvae are adapted to a low-food environment, and that predation is likely to be more important as a source of mortality than starvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号