首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Chlorinated ethenes such as trichloroethene (TCE), cis‐1,2‐dichloroethene (cis‐1,2‐DCE), and vinyl chloride along with per‐ and polyfluoroalkyl substances (PFAS) have been identified as chemicals of concern in groundwater; with many of the compounds being confirmed as being carcinogens or suspected carcinogens. While there are a variety of demonstrated in‐situ technologies for the treatment of chlorinated ethenes, there are limited technologies available to treat PFAS in groundwater. At a former industrial site shallow groundwater was impacted with TCE, cis‐1,2‐DCE, and vinyl chloride at concentrations up to 985, 258, and 54 µg/L, respectively. The groundwater also contained maximum concentrations of the following PFAS: 12,800 ng/L of perfluoropentanoic acid, 3,240 ng/L of perfluorohexanoic acid, 795 ng/L of perfluorobutanoic acid, 950 ng/L of perfluorooctanoic acid, and 2,140 ng/L of perfluorooctanesulfonic acid. Using a combination of adsorption, biotic, and abiotic degradation in situ remedial approaches, the chemicals of concern were targeted for removal from the groundwater with adsorption being utilized for PFAS whereas adsorption, chemical reduction, and anaerobic biodegradation were used for the chlorinated ethenes. Sampling of the groundwater over a 24‐month period indicated that the detected PFAS were treated to either their detection, or below the analytical detection limit over the monitoring period. Postinjection results for TCE, cis‐1,2‐DCE, and vinyl chloride indicated that the concentrations of the three compounds decreased by an order of magnitude within 4 months of injection, with TCE decreasing to below the analytical detection limit over the 24‐month monitoring period. Cis‐1,2‐DCE, and vinyl chloride concentrations decreased by over 99% within 8 months of injections, remaining at or below these concentrations during the 24‐month monitoring period. Analyses of Dehalococcoides, ethene, and acetylene over time suggest that microbiological and reductive dechlorination were occurring in conjunction with adsorption to attenuate the chlorinated ethenes and PFAS within the aquifer. Analysis of soil cores collected pre‐ and post‐injection, indicated that the distribution of the colloidal activated carbon was influenced by small scale heterogeneities within the aquifer. However, all aquifer samples collected within the targeted injection zone contained total organic carbon at concentrations at least one order of magnitude greater than the preinjection total organic carbon concentrations.  相似文献   

3.
In this study, landfill leachate treatment technologies alternative to anaerobic treatment were experimentally investigated. The emphasis was placed upon nitrogen removal through the use of struvite precipitation. Treatment technologies studied included struvite precipitation, low pH (acidic) air stripping, and activated sludge. Dilution of landfill leachate was used as a means to obtain appropriate quality for feeding the activated sludge process in some instances. Five main treatment combinations were applied. The first and second schemes were struvite precipitation followed by activated sludge process which was fed on undiluted and diluted (1:5) effluents. The third scheme was dilution, activated sludge and struvite precipitation. The fourth alternative was acidic air stripping, struvite precipitation and activated sludge process. The fifth scheme was acidic air stripping, activated sludge and struvite precipitation. All treatment schemes provided comparable COD and ammonia removals, all being around 90%. The treatment schemes incorporating the acidic air stripping, however, was found to be the most advantageous in terms of both efficiency and volume and aeration requirements of the activated sludge process since over 80% COD could be removed in the stripping step. Of the fourth and fifth alternative schemes, the fourth was the most efficient, providing 95% removal of both COD and ammonia. Initial dilution of the leachate at a 1:5 ratio was the least effective one, yielding 90% or lower removals for COD and ammonia. The first scheme, namely application of struvite precipitation to raw leachate followed by activated sludge with or without dilution, proved to be a practical system, providing over 85% COD and 99% ammonia removals. High organic loading up to 0.8 g COD/g VSS day was found to be applicable within this scheme.  相似文献   

4.
A bench‐scale study was conducted to evaluate the effect of divalent cations on the adsorption of perfluoroalkyl and polyfluoroalkyl substances (PFAS) onto soil particles. The study entailed batch testing of a synthetic soil mixture under a range of Epsom salt (soluble magnesium sulfate heptahydrate) concentrations. The synthetic soil was produced using a mix of sand, silt, clay, and organic matter that then was mixed and saturated with water collected from a PFAS‐impacted water source. The results indicate that variable concentrations of magnesium (divalent cation) had a minor effect on the sorption of perfluorooctane sulfonate with the highest sorption occurring in the strongest solution of Epsom salt. An unanticipated result of the test involved apparent biomediated transformation of polyfluorinated alkylated sulfonates (fluorotelomers or FTS) to perfluorooctanoic acid, perfluoroheptanoic acid (PFHpA), and perfluorononanoic acid. We believe this is the first time the complete transformation of 6:2 FTS to PFHpA has been observed and reported under ambient surface water‐like conditions within 6 months, a relatively short timeframe.  相似文献   

5.
Groundwater at most underground storage tank (UST) spills sites in Kansas contains both methyl tertiary butyl ethylene (MTBE) and benzene, and both contaminants must be effectively treated to close the sites. Soil vacuum extraction, air sparging, and excavation are the most common treatment technologies in Kansas. To compare the relative performance of these conventional remedial technologies for treating MTBE as compared to benzene, 66 sites in the Kansas UST Trust Fund were identified that had initial concentrations of both MTBE and benzene above the reporting limit of 1 μg/L, and that had at least two rounds of analytical data. Sites were excluded from the comparison if the monitoring wells had free product. Of the 66 sites, 15 had met the clean‐up goal for benzene, and 50 had met the goal for MTBE. The extent of treatment for MTBE and benzene was calculated as the ratio of the highest concentration in any well at the site in the most recent round of sampling to the maximum concentration in any well at the site in the previous rounds of sampling. The extent of treatment was greater for MTBE (statistically significant at p = 0.032). The geometric mean of the extent of treatment in the 66 sites was 0.057 for MTBE, compared to 0.14 for benzene. In Kansas, conventional technologies removed MTBE from the source areas of groundwater plumes at least as effectively as they removed benzene. © 2003 Wiley Periodicals, Inc.  相似文献   

6.
Considering the trade-offs among the multiple objectives of economic efficiency, environmental risk, equity and administrative ease, the siting of a central treatment facility is attempted—a difficult but essential task in the regional hazardous waste management. For the quantification of each objective, the mathematical equations are formulated. Furthermore, the framework of the multi-objective planning technique in which the WRAP (Waste Resources Allocation Program) and Fuzzy Set theory are utilized is developed, to determine the appropriate alternative for the siting of long life public sector facility. As a case study, the developed technique is applied to the selection of the best site in the southwestern part of Korea, where the third new regional hazardous waste treatment center will be located. The effectiveness of multi-objective planning has been demonstrated, and the social and political factors affecting the siting are successfully quantified in a monetary value.  相似文献   

7.
It is necessary to develop a medical waste management system featuring nonburning treatment and safety functions for small medical institutions. In this article, the development of a waste management system without oxygen injection was achieved by means of hybrid heating using microwave energy and an electric heater. The shape of the microwave reactor was a rectangular parallelepiped with a volume of about 0.1 m3. In the experimental setup, microwave energy (2.45 GHz, about 800 W) was injected from the top of the reactor, while the heater (about 1 kW) was located at the bottom. Heat insulators were set into all the walls of the reactor. The gases generated in the system were vented through water and activated carbon. Five paper-based diapers with absorbed water were used as the waste sample. For the evaluation of performance, the reduction rate was defined as the ratio (in percent) of the weight before and after treatment. The reduction rate as a function of treatment time and the effect of the position of the waste in the reactor on the reduction rate and the uniformity of treatment were examined for about 3 kg of waste. It was found that the reduction rate reached as low as 4.2% at 3 h and then 3% after 8 h. The treated profile strongly depended on the position of the waste in the reactor. In particular, it was clarified that a metal cylindrical enclosure and a needle electrode played an important role in attaining uniform treatment of the waste.  相似文献   

8.
This study investigates the feasibility of using a silty soil excavated in highway construction as landfill liner material. The tests were conducted both at laboratory and in situ scales, and the soil was tested in pure and lime treated forms. Different levels of compaction energy were used. For the field study, a test pad was constructed and in situ hydraulic conductivity experiments were conducted by sealed double ring infiltrometers (SDRI). Laboratory testing revealed that while lime treatment improved the shear strength, it resulted in higher hydraulic conductivity values compared to pure soil. It was observed that leachate permeation did not change the hydraulic conductivity of the pure and lime treated samples. Laboratory hydraulic conductivities were on the order of 10(-9) m/s and met the 1.0E-08 m/s criterion in the Turkish regulations, which is one order of magnitude higher than the value allowed in most developed countries. SDRI testing, which lasted for 6 mo, indicated that lime treatment increased the hydraulic conductivity of pure soil significantly in the field scale tests. In situ hydraulic conductivities were on the order of 1E-08 and 1E-07 m/s, and exceeded the allowable value in the Turkish regulations. Undisturbed samples collected from the test pad were not representative of field hydraulic conductivities. Contrary to laboratory findings, higher compaction efforts did not result in lower hydraulic conductivities in field scales. The study verified the importance of in situ hydraulic conductivity testing in compacted liners.  相似文献   

9.
Journal of Material Cycles and Waste Management - In this study, we conducted bench-scale investigations for the recovery of Cu wires, PVC coatings, and plasticizers from long non-uniform cables by...  相似文献   

10.
11.
Soil and groundwater contamination due to petroleum hydrocarbon spills is a frequent problem worldwide. In Mexico, even when programs oriented to the diminution of these undesirable events exist, in 2000, a total of 1,518 petroleum spills were reported. Exploration zones, refineries, and oil distribution and storage stations frequently are contaminated with total petroleum hydrocarbons (TPH); diesel fraction; gasoline fraction; benzene, toluene, ethyl benzene, and xylenes (BTEX); and polycyclic aromatic hydrocarbons (PAHs). Among the many methodologies available for the treatment of this kind of contaminated soil, bioremediation is the most favorable, because it is an efficient/low‐cost option that is environmentally friendly. This article discusses the capability of using a biopile to treat soils contaminated with about 40,000 mg/kg of TPH. Design and operation of a 27‐m3 biopile is described in this work, including microbiological and respirometric aspects. Parameters such as TPH, diesel fraction, BTEX, and PAHs considered by the U.S. Environmental Protection Agency were measured in biopile samples at 0, 2, 4, 6, 8, 10, and 22 weeks. A final average TPH concentration of 7,300 mg/kg was achieved in 22 weeks, a removal efficiency of 80 percent. © 2007 Wiley Periodicals, Inc.  相似文献   

12.
陈勇  王清森  张浩凡 《化工环保》2017,37(3):335-339
采用FeSO_4和Na_2S作为还原剂处理铬污染紫色土壤,研究了还原过程中铬的含量及形态的变化。实验结果表明:当FeSO_4加入量为1.5%(w,下同)时,浸出Cr(Ⅵ)含量由(1 745.13±27.93)mg/kg降至(17.65±2.28)mg/kg,浸出总铬含量由(1 768.83±57.24)mg/kg降至(69.79±8.61)mg/kg,铬形态由水溶+碳酸盐结合态转变到较稳定的铁锰结合态;当Na_2S加入量为0.4%时,浸出Cr(Ⅵ)含量由(1 745.13±27.93)mg/kg降至(25.50±0.12)mg/kg,浸出总铬含量由(1 768.83±57.24)mg/kg降至(410.87±12.83)mg/kg,铬形态由水溶+碳酸盐结合态转变到铁锰结合态和有机结合态。  相似文献   

13.
To facilitate field surveys for identifying areas of incineration residue-derived soil contamination, a simple and convenient method with a soil electrical conductivity meter was examined. First, the leaching test specified by Notification No. 13 of the Ministry of the Environment, 1973, was conducted on 506 samples of 11 types of wastes and compost, and the relationship between the concentrations of toxic elements [total Hg (T-Hg), Cd, Pb, Cr6+, and As] and values of electrical conductivity (EC) was examined. The results showed that bottom ash and fly ash were wastes with high EC values and that these wastes indicated higher levels of toxic elements. Second, an estimation method for the soil EC value of contaminated soil (ECc) was proposed based on the EC values of noncontaminated soil, and its usefulness was examined. The results of field surveys conducted at sites whose soils were suspected of contamination by dioxins and other pollutants derived from incineration residues showed that the contaminated spots and areas were identified by using ECc values. Moreover, comparison of the elemental contents of soils in terms of Cr, Ni, Zn, Na, K, Ca, Fe, Mn, and others, in addition to the above-mentioned toxic elements (excluding Cr6+), with those of the potential sources of pollution was verified to be effective for identifying the source of soil contamination.  相似文献   

14.
A field study was conducted to compare the effectiveness of land treatment and mesophilic composting in removing aged polycyclic aromatic hydrocarbons (PAH) from soil. The soil composting treatment, which had 20 percent (w/w) fresh organic matter incorporated into the soil, reached mesophilic temperatures of 45 to 50°C at week 3–4 and was effective in reducing PAH from 2240 mg/kg to 120 mg/kg after 224 days of treatment. Conventional land treatment with and without added cow manure (5 percent w/w) was less effective in removing the PAH from the soil than was the mesophilic soil composting treatment. In a parallel laboratory trial, PAH concentrations were reduced below 500 mg/kg (the target cleanup concentration for the site) when the contaminated soil was amended with 20 to 30 percent (w/w) fresh organic matter after 186 days of treatment. PAH degradation was lower in the laboratory trial compared with the field trial and no self-heating of soil was demonstrated in the laboratory. Based on the relatively high total heterotrophic and naphthalene-degrading microbial populations in the nonsterile treatments, it was apparent that the absence of microorganisms was unlikely to have limited the biodegradation of PAH in the current study. Fresh organic matter amendments of green tree waste and cow manure, regular mixing of the compost, and maintenance of moisture by regular watering were critical factors in achieving the target PAH concentrations.  相似文献   

15.
Biological and physicochemical approaches were utilized in a treatment train for acid mine dis charge (AMD) waters. Anaerobic bioreactors, chemical precipitation reactors, and biopolymer chelation reactors, operated in static, semicontinuous, and continuous flow modes, removed significant quantities of metals and sulfates associated with AMD water. Static tests indicated accept able copper removal via precipitation by generation of hydrogen sulfide in anaerobic reactors. However, low pH affected the biopolymer coating in the chelation reactor, resulting in loss of bed surface. Corrections of AMD to pH > 7 resulted in some metal precipitationprior to biopolymer treatment. A series of static semicontinuous tests at pH 5.0 provided improved metal and sulfate removal. Copper (Cu+) was reduced to trace concentrations, while manganese (Mn+), although reduced, proved to be the most recalcitrant of the metals. © 2006 Wiley Periodicals, Inc.  相似文献   

16.
Soils contaminated with wood preserving wastes, including pentachlo-rophenol (PCP) and creosote, are treated at field-scale in an engineered prepared-bed system consisting of two one-acre land treatment units (LTUs). The concentration of selected indicator compounds of treatment performance included PCP, pyrene, and total carcinogenic polycyclic aromatic hydrocarbons (TCPAHs) was monitored in the soil by taking both composited soil samples at multiple points in time, and discrete soil samples at two points in time. The mean concentration of the indicator compounds and the 95-percent confidence interval (CI) of the composite and discrete samples agreed relatively well, and first-order degradation rate kinetics satisfactorily represented the mean chemical concentration loss of indicator compounds in the LTU. Toxicity of the soil, as measured by MicrotoxTM assay of the soil extracts, indicated that toxicity reduction corresponded with indicator compound disappearance. No toxicity effects were observed with time in treated layers of soil (lifts) buried beneath highly contaminated lifts of newly applied soil. This indicated that vertical migration of soluble contaminants from such lifts had little effect on the microbial activity in the underlying treated soil.  相似文献   

17.
Historic mineral ore processing operations at the former Cyprus Foote Mineral Site located in East Whiteland Township, Pennsylvania, have resulted in the creation of an approximately 10,000‐foot‐long off‐site groundwater plume impacted with lithium and bromate. The plume emanating from the site is impacting the groundwater quality of downgradient private residences. As an early part of the remedial implementation, the private residences were provided with public water connections while the source control efforts were being designed and implemented. Bromate and lithium have recently emerged as groundwater contaminants subjected to increased regulatory scrutiny. This is evidenced in a recently lowered Federal Maximum Contaminant Level (MCL) for bromate of 0.010 milligrams per liter and a Medium‐Specific Concentration (MSC) of 0.005 mg/L for lithium recently proposed by the Pennsylvania Department of Environmental Protection (PADEP) for all groundwater within the Commonwealth. Elevated concentrations for bromate and lithium were detected above the Proposed Remediation Goals (PRGs) for the site, MCLs, and MSCs at a distance of 7,300 feet and 9,200 feet from the source area, respectively. To reduce the contaminant concentrations within the groundwater plume, which will ultimately result in a regressing plume, and to enable the Brownfield redevelopment of this Superfund site, auger‐based, in situ soil stabilization (ISS) with depths of up to 75 feet below ground surface (bgs) was selected as the remedy. The remedial implementation required the temporary removal and relocation of over 100,000 cubic yards of overburden to expose the lithium‐bearing tailings prior to treatment. Using customized 90‐foot‐long, 9‐foot‐diameter augers attached to cranes and drilling platforms, ancillary support excavators, and approximately 21,000 tons of reagent; 2,019 ISS columns were advanced to depths ranging from 10 to 74 feet bgs. This resulted in the creation of an in situ low‐permeablity 117,045‐yd3 “quasi‐monolith,” which encompasses a lateral extent of approximately three acres. The integration of a comprehensive ISS design with a comprehensive long‐term groundwater‐monitoring plan ensured the success of the ISS implementation and will enable a continued evaluation of the off‐site groundwater quality. © 2009 Wiley Periodicals, Inc.  相似文献   

18.
In 1993 environmental consultants, working in concert with the State of Michigan, discovered groundwater contamination that threatened the drinking water supply of the town of Big Rapids. The contamination originated from leaking underground storage tanks and gasoline lines, which were removed. A pilot study indicated the contaminated area extended to 240′ x 180′ and affected soil as well as groundwater. A remediation plan was designed by and implemented by Continental Remediation Systems, Inc., a Natick, Massachusetts, firm. The remediation plan is ongoing and includes an interceptor trench to stop gasoline from flowing into the creek, as well as air sparging to vent and treat the contaminated soil. It is anticipated that the remediation project will take six months to complete. The chief advantage of on-site remediation is that it avoids the costs and liabilities associated with landfill disposal and no materials need leave the site.  相似文献   

19.
Permeable biobarrier systems (PBSs) are being recognized as low‐cost passive bioremediation technologies for chlorinated organic contamination. This innovative technology can play a crucial and effective role in site restorations. Laboratory‐scale experiments were conducted to investigate the biodegradation of trichloroethylene (TCE) to ethylene in shallow groundwater through the use of a PBS enhanced by bioaugmentation at the U.S. Department of Energy's Savannah River Site (SRS). Two composts and two plant amendments, eucalyptus mulch (EM) and corncobs (CC), were examined for their effectiveness at creating and maintaining conditions suitable for TCE anaerobic dechlorination. These materials were evaluated for their (1) nutrient and organic carbon content, (2) TCE sorption characteristics, and (3) longevity of release of nutrients and soluble carbon in groundwater to support TCE dechlorination. Native bacteria in the columns had the ability to convert TCE to dichloroethenes (DCEs); however, the inoculation with the TCE‐degrading culture greatly increased the rate of biodegradation. This caused a significant increase in by‐product concentration, mostly in the form of DCEs and vinyl chloride (VC) followed by a slow degradation to ethylene. Of the tested amendments, eucalyptus mulch was the most effective at supporting the reductive dechlorination of TCE. Corncobs created a very acidic condition in the column that inhibited dechlorination. © 2007 Wiley Periodicals, Inc.  相似文献   

20.
The soil and two aquifers under an active lumber mill in Libby, Montana, had been contaminated from 1946 to 1969 by uncontrolled releases of creosote and pentachlorophenol (PCP). In 1983, because the contaminated surface soil and the shallower aquifer posed immediate risks to human health and the natural environment, the U.S. Environmental Protection Agency placed the site on its National Priorities List. Feasibility studies in 1987 and 1988 determined that in situ bioremediation would help clean up this aquifer and that biological treatment would help clean up the contaminated soils. This article outlines the studies that led to a 1988 EPA record of decision and details the EPA-approved remedial plan implemented starting in 1989; EPA estimates a total cost of about $15 million (in 1988 dollars). The plan involves extensive excavation and biological treatment of shallow contaminated soils in two lined and bermed land treatment units, extraction of heavily contaminated groundwater, an aboveground bioreactor treatment system, and injection of oxygenated water to the contaminant source area, as well as to other on-site areas affected by the shallower aquifer's contaminant plume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号