首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Natural bentonite was treated by hydrochloric, nitric, and phosphoric acids followed by washing with sodium hydroxide in order to enhance its adsorption capacity. The sample that treated with hydrochloric acid followed by further treatment with NaOH showed the highest cation exchange capacity with a value of 51.20 meq/100 g. The zero-point of charge for this sample was found to be 4.50. Adsorption isotherms for both cobalt and zinc were fitted using Langmuir, Freundlich, and Redlich-Peterson and showed an adsorption capacity of 138.1 mg Co2+ and 202.6 mg Zn2+ per gram of treated sample.  相似文献   

2.
As a large and diverse group of secondary metabolites, phenolic compounds are one of the most common chemical pollutants present in water resources. these compounds can have toxic effects on ecosystems and humans. Therefore, their removal from water sources appears to be of great importance. In this study, a magnetic graphene oxide (MGO) photocatalyst was synthesized and used to remove phenol from water. The fabricated GO magnetic nanocomposites were determined by SEM and FTIR techniques. Afterward, these nanoparticles were used to remove phenol from aquatic media considering different operational parameters, including pH of the solution, initial concentration of phenol, contact time, and adsorbent dosage. The results showed that the magnetized GO nanoparticles could remove 90.83% of phenol molecules under the optimal conditions of solution pH = 3.0, initial phenol concentration of 20 mg/L, adsorbent concentration of 300 mg/L, and contact time of 120 min. additionally have compared the results of UV, Fe3O4/GO, and Fe3O4/GO/UV on the removal of phenol under optimum conditions. Accordingly, the phenol removal efficiencies for UV alone, Fe3O4/GO, and Fe3O4/GO/UV were obtained at 4.5, 65.73, and 90.83%, respectively. Based on the findings, the prepared magnetic GO nanoparticles have extended capabilities such as easy and rapid separation from sample and high potential in removing phenolic compounds, so, it can be introduced as an appropriate adsorbent for removal of this pollutant from water and wastewater.  相似文献   

3.
The ability of Turkish illitic clay (TIC) in removal of Cd(II) and Pb(II) ions from aqueous solutions has been examined in a batch adsorption process with respect to several experimental conditions including initial solution pH, contact time, initial metal ions concentration, temperature, ionic strength, and TIC concentration, etc. The characterization of TIC was performed by using FTIR, XRD and XRF techniques. The maximum uptake of Cd(II) (11.25 mg g−1) and Pb(II) (238.98 mg g−1) was observed when used 1.0 g L−1 of TIC suspension, 50 mg L−1 of initial Cd(II) and 250 mg L−1 of initial Pb(II) concentration at initial pH 4.0 and contact time of 240 min at room temperature. The experimental data were analyzed by the Langmuir, Freundlich, Temkin and Dubinin Radushkevich (D-R) isotherm models. The monolayer adsorption capacity of TIC was found to be 13.09 mg g−1 and 53.76 mg g−1 for Cd(II) and Pb(II) ions, respectively. The kinetics of the adsorption was tested using pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models. The results showed that the adsorption of Cd(II) and Pb(II) ions onto TIC proceeds according to the pseudo-second-order model. Thermodynamic parameters including the Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) changes indicated that the present adsorption process was feasible, spontaneous and endothermic in the temperature range of 5–40 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号