首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W S Kuo 《Chemosphere》1999,39(11):1853-1860
Synergistic effects including TOC elimination, ozone consumption and microtoxicity reduction for combination of photolysis and ozonation compared to those of direct photolysis and ozonation alone on destruction of chlorophenols including 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol were studied. It was found that the synergistic effects of combination of photolysis and ozonation increased obviously with increasing initial pH of solution to basic pH levels. Results showed that the synergistic effects of photolytic ozonation under the conditions imposed was notable with mineralization rate enlarging more than 100%, oxidation index (OI) decreasing 50%, and microtoxicity being reduced by 30%, indicating that the potentialities of photolytic ozonation compared to direct photolysis and ozonation alone was remarkable for treatment of industrial wastewater containing chlorophenols.  相似文献   

2.
This investigation reports on the effects of soil organic matter (SOM) during the oxidation of chlorophenols with Fe2+-catalyzed H2O2 (Fenton oxidation) system. The soil pH was 7.1 and was not altered. Sorption experiments of soil pre-treated under various oxidation conditions were performed. Concentrations of organic matter in the liquid phase and soil before and after oxidation were analyzed. The results were correlated to the observation in batch Fenton oxidation tests. They showed that the oxidation of chlorophenols at natural soil pH depended on the dose of H2O2 and Fe2+. The soil organic content did not vary significantly after various Fenton treatments, while the sorption of chlorophenols was 10-25% less by the oxidation. The concentration of chlorophenols in the liquid phase exhibited a "decrease and rebound" phenomenon in the batch Fenton oxidation tests. It appeared that the oxidation of SOM resulted in the release of sorbed chlorophenols which were then oxidized by the excess H2O2. An "oxidation-desorption-oxidation" scheme was proposed to describe one of the interaction mechanisms among the oxidant, SOM, and chlorophenols during oxidation.  相似文献   

3.
Kim JK  Metcalfe IS 《Chemosphere》2007,69(5):689-696
The presence and impact of hydroxyl radicals generated via the catalytic decomposition of H(2)O(2) over heterogeneous copper catalysts were investigated by using two detection methods, an electron spin resonance-spin trapping method and a chemical probe method. Detection of the (5,5-dimethyl-1-pyrroline-N-oxide)-OH adduct signal and formation of 4-chlorocatechol during the oxidation of a 4-chlorophenol substrate demonstrated that the three heterogeneous copper catalysts employed here (CuO, Cu/Al(2)O(3) and CuO.ZnO/Al(2)O(3)) were capable of generating hydroxyl radicals in combination with H(2)O(2). The oxidative mechanism of the hydroxyl radical in the presence of heterogeneous copper catalysts is discussed with regard to the further oxidation of the (5,5-dimethyl-1-pyrroline-N-oxide)-OH adduct and hydroxylated products of 4-chlorophenol oxidation. Interestingly, integration of the 5,5-dimethyl-1-pyrroline-N-oxide-OH adduct signal could not be used to reliably measure the total amount of hydroxyl radicals generated as a result of oxidative attack on the adduct. This may be as a result of locally higher hydroxyl radical concentrations in the presence of a heterogeneous catalyst leading to further unwanted oxidation of the (5,5-dimethyl-1-pyrroline-N-oxide)-OH.  相似文献   

4.
以天然锰矿为金属催化剂,研究了锰矿催化臭氧氧化水中4-氯酚的降解效果。采用毛细管电泳方法及色质联用技术.分别对反应的中间产物和终产物进行了分析。推测了锰矿催化臭氧氧化水中4-氯酚的降解反应机理可能为:锰矿的吸附氧化与锰矿生成的Mn^2 催化臭氧分解.产生更多高活性的羟基自由基.从而提高了臭氧的氧化能力。  相似文献   

5.
Germs, xenobiotics and organic matter that influence the colour, turbidity and organoloeptic properties of water are removed by chlorination. Unfortunately, chlorine oxidants including sodium hypochlorite, used in water treatment induce processes that partly convert the treated compounds to unwanted chlorinated derivatives. The purpose of this work was to analyse the efficiency of transformation of phenol, catechol, guaiacol and syringol exposed to sodium hypochlorite and determine the intermediates formed during oxidative conversion of these compounds. The analysis was performed in aerobic conditions, both in acidic (pH 4.0) and alkaline (pH 8.0) medium. The effectiveness of transformation was slightly higher in acidic in comparison to alkaline conditions. Some chlorophenols, such as 2-chlorophenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol and pentachlorophenol were determined as the products of phenol conversion. Chlorophenols were also formed during catechol, guaiacol and syringol transformation by replacement of hydroxy and methoxy residues by chlorine atoms. Moreover, some chlorocatechols and chlorinated methoxyphenols were determined during catechol and methoxyphenols transformations. Higher concentrations of chlorinated compounds were observed in the alkaline environment during phenol transformation. Conversion of catechol and methoxyphenols generated higher amounts of chlorinated intermediates in the acidic medium. In samples carboxylic acids like acetic and formic acids were determined. The formation of these compounds was the result of the cleavage of aromatic structure of phenols.  相似文献   

6.
Zhihui A  Peng Y  Xiaohua L 《Chemosphere》2005,60(6):824-827
In this work the synergistic effects of several microwave assisted advanced oxidation processes (MW/AOPs) were studied for the degradation of 4-chlorophenol (4-CP). The efficiencies of the degradation of 4-CP in dilute aqueous solution for a variety of AOPs with or without MW irradiation were compared. The results showed that the synergistic effects between MW and H2O2, UV/H2O2, TiO2 photocatalytic oxidation (PCO) resulted in a high degradation efficiency for 4-CP. The potential of MW/AOPs for treatment of industrial wastewater is discussed.  相似文献   

7.
INTENTION, GOAL, SCOPE, BACKGROUND: Since the intermediate products of some compounds can be more toxic and/or refractory than the original compund itself, the development of innovative oxidation technologies which are capable of transforming such compounds into harmless end products, is gaining more importance every day. Advanced oxidation processes are one of these technologies. However, it is necessary to optimize the reaction conditions for these technologies in order to be cost-effective. OBJECTIVE: The main objectives of this study were to see if complete mineralization of 4-chlorophenol with AOPs was possible using low pressure mercury vapour lamps, to make a comparison of different AOPs, to observe the effect of the existence of other ions on degradation efficiency and to optimize reaction conditions. METHODS: In this study, photochemical advanced oxidation processes (AOPs) utilizing the combinations of UV, UV/H2O2 and UV/H2O2/Fe2+ (photo-Fenton process) were investigated in labscale experiments for the degradation and mineralization of 4-chlorophenol. Evaluations were based on the reduction of 4-chlorophenol and total organic carbon. The major parameters investigated were the initial 4-chlorophenol concentration, pH, hydrogen peroxide and iron doses and the effect of the presence of radical scavengers. RESULTS AND DISCUSSION: It was observed that the 4-chlorophenol degradation efficiency decreased with increasing concentration and was independent of the initial solution pH in the UV process. 4-chlorophenol oxidation efficiency for an initial concentration of 100 mgl(-1) was around 89% after 300 min of irradiation in the UV process and no mineralization was achieved. The efficiency increased to > 99% with the UV/H2O2 process in 60 min of irradiation, although mineralization efficiency was still around 75% after 300 min of reaction time. Although the H2O2/4-CP molar ratio was kept constant, increasing initial 4-chlorophenol concentration decreased the treatment efficiency. It was observed that basic pHs were favourable in the UV/H2O2 process. The results showed that the photo-Fenton process was the most effective treatment process under acidic conditions. Complete disappearance of 100 mgl(-1) of 4-chlorophenol was achieved in 2.5 min and almost complete mineralization (96%) was also possible after only 45 min of irradiation. The efficiency was negatively affected from H2O2 in the UV/H2O2 process and Fe2+ in the photo-Fenton process over a certain concentration. The highest negative effect was observed with solutions containing PO4 triple ions. Required reaction times for complete disappearance of 100 mgl(-1) 4-chlorophenol increased from 2.5 min for an ion-free solution to 30 min for solutions containing 100 mgl(-1) PO4 triple ion and from 45 min to more than 240 min for complete mineralization. The photodegradation of 4-chlorophenol was found to follow the first-order law. CONCLUSION: The results of this study showed that UV irradiation alone can degrade 4-CP, although at very slow rates, but cannot mineralize the compound. The addition of hydrogen peroxide to the system, the so-called UV/H2O2 process, significantly enhances the 4-CP degradation rate, but still requires relatively long reaction periods for complete mineralization. The photo-Fenton process, the combination of homogeneous systems of UV/H2O2/Fe2+ compounds, produces the highest photochemical elimination rate of 4-CP and complete mineralization is possible to achieve in quite shorter reaction periods when compared with the UV/H2O2 process. RECOMMENDATIONS AND OUTLOOK: It is more cost effective to use these processes for only purposes such as toxicity reduction, enhancement of biodegradability, decolorization and micropollutant removal. However the most important point is the optimization of the reaction conditions for the process of concern. In such a case, AOPs can be used in combination with a biological treatment systems as a pre- or post treatment unit providing the cheapest treatment option. The AOP applied, for instance, can be used for toxicity reduction and the biological unit for chemical oxygen demand (COD) removal.  相似文献   

8.
The chemical decomposition of aqueous solutions of various chlorophenols (4-chlorophenol (4-CP), 2,4-dichlorophenol (2-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP)), which are environmental priority pollutants, is studied by means of single oxidants (hydrogen peroxide, UV radiation, Fenton's reagent and ozone at pH 2 and 9), and by the Advanced Oxidation Processes (AOPs) constituted by combinations of these oxidants (UV/H2O2 UV/Fenton's reagent and O3/UV). For all these reactions the degradation rates are evaluated by determining their first-order rate constants and the half-life times. Ozone is more reactive with higher substituted CPs while OH* radicals react faster with those chlorophenols having lower number of chlorine atoms. The improvement in the decomposition levels reached by the combined processes, due to the generation of the very reactive hydroxyl radicals. in relation to the single oxidants is clearly demonstrated and evaluated by kinetic modeling.  相似文献   

9.
Aqueous solutions of Fenton's reagent (Fe2+ + H2O2) have been used to effect the total decomposition of the chlorophenols: 2-chlorophenol, 3-chlorophenol, 4-chlorophenol, 3,4-dichlorophenol and 2,4,5-trichlorophenol. The mineralization of these chlorinated aromatic substrates to CO2 and free Cl has been studied as a function of [Fe2+] and [HClO4]. Increasing the concentration of Fe2+ enhances the decomposition process, while an increase in the concentration of HClO4, inhibits the reaction. The presence of Fe3+ alone (without any Fe2+) with H2O2 has no effect on the degradation of the chlorophenols. In all cases, the stoichiometric quantity of free Cl was obtained at the completion of the decomposition reaction; but the rates of disappaearance of the chlorophenol and of the formation of the Cl are not similar. This suggests that some chlorinated aliphatic species may be formed as possible intemediates.  相似文献   

10.
Photocatalytically active thin TiO(2) films were produced by spin-coating or dip-coating an alkoxy precursor onto a transparent conducting electrode substrate and by thermal oxidation of titanium metal. The thin films were used to study the photoelectrocatalytic or photoelectrochemical degradation of oxalic acid and 4-chlorophenol (4-CP) under near UV (monochromatic, 365 nm) light irradiation. Degradation was monitored by a variety of methods. In the course of oxalic acid degradation, CO(2) formation accounted for up to 100% of the total organic carbon degradation for medium starting concentrations; for the degradation of 4-CP, less CO(2) was detected due to the higher number of oxidation steps, i.e. intermediates. Incident-photon-to-current conversion efficiency, educt degradation and product formation as well as Faradaic efficiencies were calculated for the degradation experiments. Quantum yields and Faradaic efficiencies were found to be strongly dependent on concentration, with maximum values (quantum yield) around 1 for the highest concentrations of oxalic acid.  相似文献   

11.
选择YT-1000型活性炭纤维(ACF)作为催化剂,考察ACF与O3协同作用催化降解水溶液中4-氯酚的最佳反应条件,并将该条件应用于焦化废水生物处理尾水中难降解有机污染物的催化氧化。ACF表面具有丰富的微孔结构,对4-氯酚有良好的吸附作用,在动力学上提高了其与O3反应的起始浓度,并且在ACF表面含氧、含氮等基团的催化作用下发生氧化反应,1 L浓度为100 mg/L的4-氯酚水样中投加2 g ACF反应6 min时,吸附作用对TOC的去除率为43.4%,而ACF协同O3作用时的TOC去除率提高到72.5%,协同增效作用为67.1%;在选定的反应条件下,ACF协同O3降解焦化废水生物处理尾水,60 min时的TOC与色度的去除率分别达到56.8%和96.3%。上述研究过程证明了吸附作用与催化作用的协同能有效降解生物过程不能降解的焦化废水中惰性有机污染物。  相似文献   

12.
Chan YC  Chen JN  Lu MC 《Chemosphere》2001,45(1):29-35
Langmuir-Hinshelwood (L-H) kinetic expression was used to develop a basic mathematical model, which could describe the inhibition of intermediates in the photocatalysis of 2-chlorophenol (2-CP) in a suspended TiO2 system. Results showed that the photocatalytic oxidation of 2-chlorophenol followed the L-H type behavior and the reaction by-products displayed an inhibiting effect on the degradation rate. The inhibition was estimated by comparing to observed and estimated half-lives. The higher the initial concentration of 2-chlorophenol, the higher the inhibition of photocatalytic reaction. The L-H kinetic has been modified slightly in this study to rationalize the contrast of inhibited behavior and to improve in favor of a surface reaction. The concentrations of 2-chlorophenol were investigated ranging from 7.78 x 10(-5) to 7.78 x 10(-4) mol l(-1). The degradation of 2-chlorophenol in this reaction condition approximates a first-order kinetics to near-complete degradation. Calculated kinetic profiles are in an excellent agreement with the experimental observation. The results of the theoretical analysis can be used to estimate reaction rates in different initial concentrations of target compound.  相似文献   

13.
Visez N  Sawerysyn JP 《Chemosphere》2007,67(9):S144-S149
The oxidative degradation of 2-chlorophenol in air (equivalence ratio phi=0.8) was investigated at 350 degrees C by using the sealed tube technique under different conditions: in the gas phase and in the presence of copper chlorides (CuCl2 and CuCl in different proportions). Not only PCDD/Fs but carbon oxides and other organic products such as chlorophenols, chlorobenzenes, tetrachloroethylene and tetrachlorocyclopentenedione were quantified in order to evaluate the relative importance of reaction pathways. Additional experiments were performed to analyse the degradation products of octachlorodibenzodioxin and 2-monochlorodibenzodioxin. Although it was stated that chlorobenzenes could be formation precursors for PCDD/Fs, experimental data obtained in this work show that chlorobenzenes can also be degradation products of PCDD/Fs.  相似文献   

14.
Weber R  Hagenmaier H 《Chemosphere》1999,38(3):529-549
The pyrolysis of chlorinated phenates at a temperature of about 280 degrees C results in the formation of definite chlorinated dibenzodioxin (PCDD) congeners [1-3]. It is shown that in gas phase reactions chlorophenols react in the presence of oxygen above 340 degrees C not only to PCDD but also to chlorinated dibenzofurans (PCDF). The mechanism of this reaction of chlorophenols to PCDD and PCDF was elucidated. In a first step phenoxyradicals are formed which are capable of forming PCDDs and PCDFs. This is confirmed by the oxygen dependency of the reaction. In an argon atmosphere no dimerization of chlorophenols could be observed at 420 degrees C. By the identification of intermediates and by analyzing the PCDF isomers formed from individual chlorophenols the reaction pathway is elucidated. As intermediates in the formation of PCDFs polychlorinated dihydroxybiphenyls (DOHB) were identified. These are most likely formed by the dimerization of two phenoxy radicals at the hydrogen substituted carbons in ortho-positions under simultaneous movement of the hydrogen atoms to the phenolic oxygen PCDDs are formed in the gas phase via ortho-phenoxyphenols (POP) analogous to the pyrolysis of phenates, but due to the radical mechanism in the first condensation step to POPs not only a chlorine atom is capable for substitution but also the hydrogen atoms. The formation of the DOHBs and their condensation to PCDFs and hydroxylated PCDFs as well as the ratio of PCDD to PCDF formed show a strong dependency on the reaction temperature, the substitution pattern of the chlorophenols and the oxygen concentration.  相似文献   

15.
It is well known that the dissolution of goethite plays an important role in catalyzing the oxidation of organic chemicals. Therefore, this study investigates how surface dissolution of goethite affects 2-chlorophenol oxidation in the goethite/H2O2 process. Experimental results indicate that ligand and reductant can enhance the dissolution rate of goethite, which is surface-controlled. Our results further indicate 2-chlorophenol degradation depends on goethite concentration. In addition, the oxidation rate of 2-CP is correlated with reductive dissolution rate at various dosages of goethite. Moreover, the oxidation mechanism of 2-CP is also a surface-controlled reaction. A mechanism proposed herein indicates that, in addition to the contaminant, its intermediate species affect the oxidation rate as well.  相似文献   

16.
针对废水湿式双氧水催化氧化,采用浸渍法制备Cu催化剂,研究非均相Cu催化剂在常温常压湿式双氧水催化氧化中的稳定性与失活问题。研究表明,催化剂制备条件及催化氧化反应条件对催化剂中Cu2+溶出均有影响。研究同时表明,催化剂失活与活性组分流失和活性组分被有机中间产物覆盖有关,高温焙烧可对催化剂再生。  相似文献   

17.
Chen PJ  Kullman SW  Hinton DE  Linden KG 《Chemosphere》2007,68(6):1041-1049
Polychromatic ultraviolet irradiation, such as from medium pressure (MP) Hg lamps may enhance the UV degradation of environmental pollutants as compared to low pressure (LP) Hg UV sources emitting monochromatic irradiation. Typically, studies involving destruction of environmental pollutants such as endocrine disrupting compounds (EDCs) are based on measurement of the parent compound decay using analytical chemistry, but such information is insufficient to determine an effective treatment endpoint because the identity and biological activity of many transformation products remain unknown. Bioanalytical methods to assess residual biological activity of a treated water offers one means to compare removal efficiency of EDC activity between MP- and LP-UV lamps under photolysis and UV/H2O2 oxidation. In this study, changes in estrogenic activity of bisphenol-A (BPA) as a function of UV treatment were evaluated using both an in vitro yeast estrogen screen and in vivo vitellogenin assay with Japanese medaka (Oryzias latipes) fish. Decay of BPA parent compound and formation of degradation products were followed using HPLC analysis. Results demonstrated that MP-UV direct photolysis more effectively removed BPA and associated estrogenic activity compared to LP-UV lamps. UV in combination with H2O2 significantly removed estrogenic activity in vitro and in vivo compared to direct photolysis; however, no significant difference in removal rates was found between the two lamps under UV/H2O2 oxidation. Furthermore, the UV/H2O2 process was effective for reducing embryo toxicity of BPA, but resulted in the production of acidic intermediates, causing acute toxicity and delayed hatching in some medaka embryos.  相似文献   

18.
The photochemical behaviour of chlorophenols is different to that of non-halogenated phenols. In the former, the first step is a C-Cl bond scission, which is not influenced by oxygen. Chlorine is converted into hydrochloric acid. For monochlorophenols, the position of the chlorine on the ring strongly influences the transformation. In the molecular form, 2-chlorophenol is converted into pyrocatechol. In the anionic form however, it is reduced in a cyclopentadienic acid which dimerizes according to a Diels-Alder reaction. The irradiation of 3-chlorophenol leads to resorcinol whatever the pH. This would appear to suggest a photohydrolysis mechanism. With 4-chlorophenol, the photochemical conversion is not so specific. Hydroquinone is formed (mainly in aerated solution), along with polyphenolic oligomers. A radical mechanism is proposed.  相似文献   

19.
Lu MC 《Chemosphere》2000,40(2):125-130
The use of goethite (alpha-FeOOH) and hydrogen peroxide was recently found that they could effectively oxidize organic compounds. The study was to investigate the effect of goethite particle size, goethite concentration, Fe2+ and Fe3+ on the 2-chlorophenol oxidation. Results indicated that 2-chlorophenol can be decomposed with hydrogen peroxide catalyzed by goethite and the oxidation rate increased with decreasing goethite particle size. 2-Chlorophenol degradation was almost retarded with 0.8 g/l of goethite because ferrous ions could not be produced at this condition. Addition of Fe2+ and Fe3+ can enhance the catalytic oxidation rate of 2-chlorophenol very efficiently. In conclusion, the main mechanism of goethite catalyzing hydrogen peroxide to oxidize 2-chlorophenol may be due to the catalysis of ferrous ions and goethite surface.  相似文献   

20.
Removal of 2-chlorophenol from water using rice-straw derived ash (RSDA) was evaluated in this study to compare with commercial activated carbon. RSDA was obtained by burning rice-straw at 400 °C and 700 °C for 1 h. This ash can provide a better adsorbent for 2-chlorophenol. The adsorption capacities of RSDA at 400 °C and 700 °C are 37 and 52 mg g?1 at pH 4, respectively, and decrease to 9.0 and 40 mg g?1 at pH 10. Adsorption of either neutral or anionic 2-cholorphenol by the RSDA are shown as L-shaped nonlinear isotherms, suggesting surface adsorption rather than partitioning is occurring. At higher-burning temperatures, the surface area, porosity, point of zero charge and aromaticity of the resultant RSDA increase, but the oxygen content and surface acidity decrease. The combined effects result in a higher 2-chlorophenol adsorption of RSDA at 700 °C, which shows a slight pH effect on the adsorption of 2-chlorophenol, due to the lower content of oxygen-containing functional groups. Oxygen-containing functional groups contribute to surface acidity and H-bonding sites for adsorbed water, which compromises the interaction between 2-chlorophenol and the adsorbents. Thus, it suggests that rice-straw derived carbon (RSDC) can be used as an effective low-cost substitute material for activated carbon for removal of chlorophenols from wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号