首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Titanium dioxide (TiO2) is a widely used photocatalyst that has been demonstrated for microorganism disinfection in drinking water. In this study, a new material with a novel structure, silver and copper loaded TiO2 nanowire membrane (Cu-Ag-TiO2) was prepared and evaluated for its efficiency to inactivate E. coli and bacteriophage MS2. Enhanced photo-activated bactericidal and virucidal activities were obtained by the Cu-Ag-TiO2 membrane than by the TiO2, Ag-TiO2 and Cu-TiO2 membranes under both dark and UV light illumination. The better performance was attributed to the synergies of enhanced membrane photoactivity by loading silver and copper on the membrane and the synergistic effect between the free silver and copper ions in water. At the end of a 30 min test of deadend filtration under 254 nm UV irradiation, the Cu-Ag-TiO2 membrane was able to obtain an E. coli removal of 7.68 log and bacteriophage MS2 removal of 4.02 log, which have met the US EPA standard. The free metal ions coming off the membrane have concentrations of less than 10 ppb in the water effluent, far below the US EPA maximum contaminant level for silver and copper ions in drinking water. Therefore, the photo-activated disinfection by the Cu-Ag-TiO2 membrane is a viable technique for meeting drinking water treatment standards of microbiological water purifiers.
  相似文献   

2.
Moulder  Shelagh M. 《Marine Biology》1980,59(4):193-200
The possible interactive effect of the chlorides of copper and mercury on the euryhaline amphipod Gammarus duebeni in 100% sea water was examined using the following indices: (i) 96 h LC50 values, (ii) urine production rates and (iii) degree of mercury accumulation. Both (a) the interaction of the chlorides of mercury and copper together in solution and (b) the influence of cupric chloride pre-treatment of individuals prior to exposure to mercuric chloride were investigated. Presence of a sublethal level of cupric chloride protected G. duebeni against the toxic action of mercuric chloride. Cupric chloride pretreatment was not so effective. The nature of the interaction between mercury and copper is discussed.  相似文献   

3.
Bioaccumulative metals such as mercury are found in increasing amounts in fish and their consumers. In the region of the Madeira River, in the Brazilian Amazon, mercury (Hg) is a predominant contaminant in the aquatic ecosystem. There is therefore a need to find specific biomarkers of mercury toxicity in fish to monitor contaminations. Here, mercury-bound proteins were identified in the liver tissues of fishes Mylossoma duriventre and Brachyplatystoma rousseauxii. Mercury was quantified in liver tissue, pellets and protein spots by graphite furnace atomic absorption. Proteins were fractionated by two-dimensional polyacrylamide gel electrophoresis and identified by mass spectrometry with electrospray ionization. We identified nine proteins linked to mercury and that presented biomarker characteristics of mercury. Among the proteins identified, isoforms of parvalbumin, ubiquitin-40S ribosomal protein S27a, brain-specific angiogenesis inhibitor 1-associated protein 2-like protein 2 and betaine–homocysteine S-methyltransferase 1 are notable for having the molecular function of binding to metallic ions.  相似文献   

4.
It is increasingly becoming known that mercury transport and speciation in the terrestrial environment play major roles in methyl-mercury bioaccumulation potential in surface water. This review discusses the principal biogeochemical reactions affecting the transport and speciation of mercury in the terrestrial watershed. The issues presented are mercury-ligand formation, mercury adsorption/desorption, and elemental mercury reduction and volatilization. In terrestrial environments, OH, Cl and S ions have the largest influence on ligand formation. Under oxidized surface soil conditions Hg(OH)2, HgCl2, HgOH+, HgS, and Hg0 are the predominant inorganic mercury forms. In reduced environments, common mercury forms are HgSH+, HgOHSH, and HgClSH. Many of these mercury forms are further bound to organic and inorganic ligands. Mercury adsorption to mineral and organic surfaces is mainly dictated by two factors: pH and dissolved ions. An increase in Cl concentration and a decrease in pH can, together or separately, decrease mercury adsorption. Clay and organic soils have the highest capability of adsorbing mercury. Important parameters that increase abiotic inorganic mercury reduction are availability of electron donors, low redox potential, and sunlight intensity. Primary factors that increase volatilization are soil permeability and temperature. A decrease in mercury adsorption and an increase in soil moisture will also increase volatilization. The effect of climate on biogeochemical reactions in the terrestrial watershed indicates mercury speciation and transport to receiving water will vary on a regional basis.  相似文献   

5.
Oysters (Crassostrea virginica) were exposed for 3 days to mercury-203 labeled HgCl2 or CH3HgCl added directly to artificial seawater or added preconcentrated on the marine diatom Phaeodactylum tricornutum. The concentration of mercury in 5 tissues was measured for 45 days after mercury was removed from the ambient water. At the beginning of the depuration period, the highest concentrations of mercury in tissues were attained in: gill>digestive system>mantle>gonad>muscle in oysters exposed to water containing mercury; and in digestive system>gill>mantle> gonad>muscle in oysters fed labeled algae. This same distribution pattern is seen for both chemical forms of mercury. Although the initial pattern of accumulation was identical for both mercury compounds within each exposure group, the fate of the accumulated mercury was very different after 45-days depuration. In oysters accumulating mercury directly from seawater, inorganic mercury residues rapidly declined in gill and digestive tissue, but were slowly reduced in mantle, gonadal, and muscle tissue. This pattern was duplicated by oysters exposed to methyl mercuric chloride in seawater except that gonadal and muscle residues greatly increased during depuration. In oysters ingesting labeled P. tricornutum cells, mercuric chloride and methyl mercuric chloride residues rapidly declined in gill and digestive tissue, remained constant in the mantle, but sharply increased in gonadal and muscle tissue during depuration.  相似文献   

6.
Barbaro  A.  Francescon  A.  Polo  B.  Bilio  M. 《Marine Biology》1978,46(3):247-257
The capacity of the barnacle Balanus amphitrite Darwin to accumulate pollutants above ambient levels was examined in two North Adriatic lagoons with respect to fluoride, copper, lead, chromium and mercury. Levels in soft tissues ranged from 138 to 312 ppm (dry weight) for fluoride, 41 to 109 ppm for copper, 7.1 to 11.7 ppm for lead, 2.10 to 3.89 ppm for chromium, and from 0.96 to 1.35 ppm for mercury. The concentration factor was of the order of 102 for fluoride, 103 for copper, and possibly higher than 103 for lead, chromium and mercury. The differences of about 2:1 in the fluoride and copper concentrations in the waters of the two lagoons were clearly reflected by the levels in the barnacles. B. amphitrite that had set on experimental panels had levels similar to those found in specimens collected from long-term natural populations as early as 42 days after immersion of the panels. Compared with literature data, the accumulation levels found in B. amphitrite for fluoride were among the highest known for invertebrates; the values for copper and lead were considerable, but exceeded by others published for B. balanoides; the results for chromium and mercury were one order of magnitude lower than values reported for other suspension-feeders or indicator organisms. B. amphitrite appears to possess most of the properties considered essential for a biological indicator. Eventual determination of the response time of the barnacle to changes in environmental level could profitably be carried out utilizing experimental panels.  相似文献   

7.
The toxicities of copper, cadmium, and mercury ions and their binary and ternary mixtures were studied using the copepods Tigriopus fulvus. The LC50 values measured after 48 h exposure to single metal solutions revealed a toxicities rank as follows: CdT. fulvus. The combined effect of the metals was found to be antagonistic for Cu?Cd, Hg?Cd, and Cu?Cd?Hg, additive for Hg?Cu.  相似文献   

8.
O. Gotsis 《Marine Biology》1982,71(3):217-222
The type of interaction of selenium and mercury, and selenium and copper on the cell growth of the planktonic alga Dunaliella minuta Lerche has been studied. The results for the various selenium/mercury and selenium/copper ratios showed that: (a) although mercury and selenium inhibited the growth of D. minuta when added to its cultures separately at levels greater than their respective threshold concentrations, they had antagonistic effects towards each other when added simulataneously at the beginning of growth; prior exposure of the culture to either metal for 2 d did not alter this antagonistic action; (b) similar antagonism was observed in combinations of selenium and copper for cultures with and without prior exposure to either metal. The reasons for the Se/Hg and Se/Cu antagonism are unknown; several hypotheses concerning possible detoxification mechanisms are proposed.  相似文献   

9.
This research describes a fast detection method on the basis of enzyme-linked immunosorbent assay (ELISA) for Escherichia coli in drainage of wastewater treatment plants. Optimized conditions such as the reaction format (sandwich or direct), the concentrations of diluted horseradish peroxidase (HRP)-E. coli conjugate, and anti-HPR antibody and pretreatment of E. coli were studied. Those results showed that the linear range of detection for E. coli was 10 cfu/mL-6 × 104 cfu/mL. Compared with conventional methods, it is a convenient and sensitive detection method with low cost.  相似文献   

10.
Streambed sediment has been attracting attention as a reservoir for bacteria, including pathogenic strains. Soil and Water Assessment Tool (SWAT) has been augmented with a bacteria transport subroutine in SWAT2005 in which bacteria die-off is the only in-stream process. The purpose of this study was to develop the partial model of sediment-associated bacteria transport in stream and to evaluate the potential significance of streambed Escherichia coli (E. coli) release and deposition within the SWAT microbial water quality simulations. Streambed E. coli release and deposition were simulated based on the sediment resuspension and deposition modules in SWAT. The modified SWAT was applied to the Little Cove Creek watershed, Pennsylvania, which has forestry and dairy pasture landuses. Temporal changes in sediment E. coli concentrations were derived from monitoring data rather than from a streambed bacteria population model. Sensitivity analyses and calibrations were separately conducted for both hydrologic and bacteria parameters. Hydrologic calibration characterized soils in the watershed as pervious and thus the surface runoff was only moderately contributing to the streamflow. However, the surface runoff carried large numbers of E. coli to the stream, and sediment resuspension contributed to the persistent concentration of E. coli in stream water. Although the uncertainty of E. coli concentrations in streambed sediments and from wildlife probably affected the performance of the modified SWAT model, this study qualitatively confirmed the significance of modeling E. coli release from streambed and deposition for the SWAT microbial water quality simulations. Further developments should include modeling dynamics of bacteria populations within streambeds.  相似文献   

11.
Antibiotic resistance is a serious public health risk that may spread via potable and reclaimed water. Effective disinfection is important for inactivation of antibiotic-resistant bacteria and disruption of antibiotic resistance genes. Ampicillin is a widely prescribed antibiotic but its effectiveness is increasingly undermined by resistance. In this study, changes in ampicillin resistance for Escherichia coli (E. coli) CGMCC 1.1595 were analyzed after exposure to different doses of ultraviolet (UV) or chlorine, and damage incurred by the plasmid encoding ampicillin resistance gene bla TEM-1 was assessed. We reported a greater stability in ampicillinresistant E. coli CGMCC 1.1595 after UV irradiation or chlorination when compared with previously published data for other E. coli strains. UV irradiation and chlorination led to a shift in the mortality frequency distributions of ampicillin-resistant E. coli when subsequently exposed to ampicillin. The ampicillin hemiinhibitory concentration (IC50) without disinfection was 3800 mg·L–1, and an increment was observed after UV irradiation or chlorination. The IC50 of ampicillin-resistant E. coli was 1.5-fold higher at a UV dose of 40 mJ·cm–2, and was 1.4-fold higher when exposed to 2.0 mg·L–1 chlorine. These results indicate that UV irradiation and chlorination can potentially increase the risk of selection for E. coli strains with high ampicillin resistance. There was no evident damage to bla TEM-1 after 1–10 mg Cl2·L–1 chlorination, while a UV dose of 80 mJ·cm–2 yielded a damage ratio for bla TEM-1 of approximately 1.2-log. Therefore, high UV doses are required for effective disruption of antibiotic resistance genes in bacteria.  相似文献   

12.
Mechanism of toxicity of ionic copper and copper complexes to algae   总被引:6,自引:0,他引:6  
The mechanism of toxicity of ionic copper and copper complexes to growth, photosynthesis, respiration, ATP levels and mitochondrial electron-transport chain-activity in two marine diatoms, Nitzschia closterium (Ehrenberg) W. Smith (Hasle, 1964) and Asterionella glacialis Castracane, and one freshwater green alga, Chlorella pyrenoidosa Chick was investigated. Copper ions depressed both cell division and photosynthesis in A. glacialis and C. pyrenoidosa, whereas ionic copper concentrations which were inhibitory to cell division in N. closterium had no effect on photosynthesis, respiration, ATP production, electron transport or membrane ultrastructure. This suggests that in N. closterium, copper does not act on the chloroplast, the mitochondrion, or the cell membrane, since if it did, the above parameters should be affected. Copper-ethylxanthogenate was exceptional amongst the copper complexes in that it stimulated respiration, mitochondrial electrontransport and ATP formation in N. closterium under conditions of strongly inhibited cell division and slightly stimulated photosynthesis. Ionic copper toxicity may result from an intracellular reaction between copper and reduced glutathione (GSH), leading to a lowering of the GSH:GSSG ratio and suppression of mitosis. In addition, copper inhibits the enzyme catalase and reduces cell defence mechanisms against H2O2 and oxygen-free radicals. Lipid-soluble copper complexes are more toxic than ionic copper because both the metal and the ligand are introduced into the cell. Toxicity of ionic copper is ameliorated by trivalent metal ions in the growth medium, including those of Mn, Co, Al, Fe and Cr which form a layer of metal (III) hydroxide around the algal cell, adsorb copper and reduce its penetration into the cell. The degree of insolubility of the metal (III) hydroxide is related to its ability to protect against copper toxicity. In addition, manganese and cobalt catalytically scavenge damaging H2O2 and superoxide radicals, respectively, produced by the cell.  相似文献   

13.
成都市河流表层沉积物重金属污染及潜在生态风险评价   总被引:32,自引:1,他引:32  
根据流经成都市内的三条河流(府河、南河、沙河)表层沉积物重金属数据,采用Hakanson潜在生态危害指数法对重金属的潜在生态风险进行了评价。结果表明(1)重金属潜在的生态危害因子(Er^i)说明大多属于轻微生态危害范畴,产牛生态危害的主要重金属是Hg、Cd,Cu、Pb次之,As影响最小;(2)多种重金属的生态系统的潜在生态风险指数(RI)表明河流重金属污染属于轻微生态危害和接近中等生态危害,其受危害程度由强至弱的次序为:府河,南河,沙河。  相似文献   

14.
The technical feasibility of using a suitable sorbent for the removal of some heavy metal ions from their aqueous solutions was investigated. The scope of the work covers the use of low-class native wool or wool wastes from industrial processes or from recycled woolen textiles for the removal of copper, nickel, cobalt, chromium, and zinc ions from their effluents. The sorption efficiency of the aforementioned metals by wool is in the following order: copper?>?cobalt?=?nickel?>?zinc?>?chromium.

The effect of time of sorption, temperature of the effluent, and concentration of metal ions on the rate of sorption was examined. The effect of oxidation or reduction of wool on its sorption power of copper ions is studied. The reduced wool was found to be better than native or oxidised wool in the sorption of copper metal from its effluents. The reuse of wool as metal sorber after elution of the metal, using hydrochloric acid, was also studied. It was found that wool can be reused for sorption after elution of copper up to 25 times of elution; a very limited amount of permanently fixed copper was observed. The use of sufficient woolen layers displays the best way of obtaining an effluent of zero copper content.  相似文献   

15.
A simulation model was developed to investigate the relative effects of temperature, oxygen concentration, substrate content and competition by autochthonous microbial community on the oscillatory behaviour and survival of Escherichia coli O157:H7 in manure and manure-amended soil. The overall decline in E. coli O157:H7 was primarily determined by competition with autochthonous copiotrophic bacteria simulated by an inter-specific competition term according to Lotka-Volterra. Oscillations of bacterial populations were attained by the relationships between relative growth and death rates with readily available substrate content. The model contains a logistic and exponential relation of relative growth and death rates, respectively, of E. coli O157:H7 and copiotrophic bacteria with temperature, resulting in optimum curves for net growth rates similar to the curves reported in the literature. The model has been both calibrated and validated on experimental data. The model was used to perform sensitivity analysis and to evaluate different manure and soil management scenarios in terms of survival of E. coli O157:H7. The relative effects of changes in temperature on simulated survival time of E. coli O157:H7 were more pronounced than changes in oxygen condition. Testing manure storage scenarios with realistic data revealed that manure stored in a heap that was turned every week resulted in almost 70% reduction of E. coli O157:H7 survival compared to unturned manure. At the surface of a heap with unturned manure, simulated survival time was the longest (2.4 times longer than inside the same heap). The simulation model provides a new approach to investigating dynamic changes of invasive microorganisms in natural substrates such as manure or manure-amended soil.  相似文献   

16.
纳米银与银离子对土壤微生物及酶活性的影响   总被引:1,自引:0,他引:1  
为研究纳米银和银离子对土壤微生物的影响,采用土壤培养方式,对不同剂量纳米银(10、50、100 mg·kg~(-1))和银离子(1、5、10 mg·kg~(-1))暴露下黄褐土、砖红壤中可培养微生物数量及土壤酶活性(脲酶、荧光素二乙酸酯水解酶、蔗糖酶、过氧化氢酶)进行研究,并采用纯培养方法对纳米银和银离子暴露下的大肠杆菌(Escherichia coli)、金黄色葡萄球菌(Staphylococcus aureus)凋亡情况进行检测,对纳米银释放的银离子毒性进行评估。结果表明,随着纳米银剂量的增加,土壤可培养微生物数量显著减少,脲酶和过氧化氢酶活性降低,蔗糖酶、荧光素二乙酸酯水解酶(FDA酶)活性没有显著变化;银离子处理中微生物数量明显减少,但土壤酶活性被激活。10 mg·L~(-1)纳米银暴露1 h后大肠杆菌、金黄色葡萄球菌凋亡率、死亡率增高;随着培养时间的延长,纳米银缓慢释放银离子,并促进大肠杆菌的凋亡。综上分析,纳米银能够抑制土壤可培养微生物生长和酶活性,其中脲酶、过氧化氢酶对纳米银较为敏感,蔗糖酶、FDA酶受纳米银的影响较小;纳米银的毒性一方面是其本身的特异抗菌性,也有部分来自缓慢释放的银离子。  相似文献   

17.
Adult oysters, Crassostrea virginica (Gmelin) were held in seawater containing 10 or 100 ppb mercury in the form of mercuric acetate for 45 days. Mercury concentration in tissues was determined by analysis of individually homogenized oyster meats using wet digestion and flameless absorption spectrophotometry. After 45 days, average mercury tissue concentration was 91,600 and 12,100 ppb in the 100 and 10 ppb mercury groups, respectively. A slight decline in mercury residues in the 100 ppb group during the accumulation period was attributed to spawning. Clearance of mercury from tissues was studied in a constant temperature regime (25°C±2Co) for 25 days and in a declining temperature regime (25° to 5°C) for 80 days by exposing treated adults to estuarine water with no mercury added. The biological half-life of mercuric acetate was 16.8 and 9.3 days in the 25°C temperature regime, and 35.4 and 19.9 days in the declining temperature regime, for the 10 and 100 ppb groups, respectively. Smaller oysters (0 to 7 g) consistently accumulated more mercury per gram wet weight than larger oysters (7 to 20 g) in populations exposed to 10 and 100 ppb mercury.  相似文献   

18.
Benthic organisms revealed enhanced uptake of mercury from polluted surface sediments (in the vicinity of a chlor‐alkali plant) which were enriched in mercury by up to 148 times relative to sediments from an unpolluted area. There is a strong correlation between the concentrations of mercury in the benthic organisms and sediments. No correlation was found between cadmium, lead, copper and zinc levels in the benthic fauna populations and the concentrations of these metals in the sediments. Ranges of concentrations (μg/g wet wt.) in the whole soft tissues varied: Hg, <0.005–3.31; Cd <0.018–1.99; Pb, <0.025–1.56; Cu, 0.242–28.8; and Zn, 9.75–310.2. The three gastropod molluscs show higher metal concentrations than do the bivalves.  相似文献   

19.
高分子重金属絮凝剂对 Hg2+的捕集及性能   总被引:6,自引:2,他引:4  
于明泉  常青  安瑜 《环境化学》2004,23(6):664-667
以含Hg^2 废水作为处理对象,研究了几个影响高分子重金属絮凝剂去除水中Hg^2 的因素,实验表明:(1)pH值对Hg^2 的去除率影响不大;(2)水中某些二价离子的存在不仅不会消耗高分子重金属絮凝剂的用量,而且会促进螯合体MHM-Hg^2 絮凝沉淀,Hg^2 的去除率在99%以上,而一价金属离子对处理效果影响不大;(3)Hg^2 和致浊物质会互相促进彼此的去除,浊度的去除率在98%以上,Hg^2 的去除率在99%以上;(4)高分子重金属絮凝剂对重金属离子具有选择性,可将部分重金属离子从其它离子中分离开、回收再利用.  相似文献   

20.
We describe the effect of inorganic mercury on the emergence, hatching and growth ofArtemia franciscana (commercially obtained). At concentrations as low as 0.01µmol 1–1, mercury delays development of the organism, but the effect on the final number of developed brine shrimp is small. At higher concentrations, mercury has a dramatic effect, inhibiting the developmental process at the emergence and hatching stages. As recorded by light and scanning electron microscopy, organisms stalled at emergence are not immediately killed. Their eye spots continue to darken and some may hatch although partially enclosed in the cyst shell. Completely emerged prenauplii in the presence of mercury often have an abnormal oval shape while hatched organisms may display shortened and deformed bodies and exhibit restricted movement. The results demonstrate that emergingA. franciscana are very sensitive to inorganic mercury and the potential usefulness of this organism for the study of metal effects upon physiological processes is indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号