首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了在表面活性剂聚氧乙烯失水三梨酸醇(Tween20)、十二烷基硫酸钠(SDS)、十二烷基苯磺酸钠(SDBS)和氯代十六烷吡啶(CPC)存在下,搅拌对水体中对氯硝基苯挥发行为影响的规律及机制.结果表明,水体的搅拌速度对对氯硝基苯的挥发行为有着显著的影响,表面活性剂的存在降低了对氯硝基苯的液膜/液相分配比,增大了传质阻力而抑制了对氯硝基苯的挥发,其抑制挥发的能力由表面活性剂的浓度和性质决定.从质量浓度看,抑制对氯硝基苯挥发的能力大小顺序为Tween20>SDS>SDBS>CPC,从临界胶束浓度(CMC)倍数看,抑制对氯硝基苯挥发的能力大小顺序为SDS>SDBS>Tween20>CPC.  相似文献   

2.
In the current EU risk assessment for pesticide registration, the European Community requires prediction of the concentration of each pesticide in air. A number of mathematical models are used to assess the fate of pesticides in groundwater, surface water and soil. PELMO 3.20 calculates the volatilization fluxes from bare soil and was improved in the new version PELMO 3.31 to include the effect of temperature and sorption in dry soil. The objective of this study was to evaluate the new version of PELMO 3.31 in predicting the pesticide volatilization under field conditions. Procymidone, malathion, and ethoprophos were the test compounds in two different seasons (autumn and winter). Comparing simulation results obtained with PELMO 3.31, after calibration, with the previous version PELMO 3.20 shows that the estimated volatilization results seems improved for malathion, similar or slightly overestimating in the warmer season for ethoprophos, and similar or slightly underestimating in the colder season for procymidone. The new release of PELMO allows a more accurate estimation of pesticides volatilization from soil as function of meteorological factors, especially for medium or low volatility pesticides. Some difficulties remain, such as the determination of the active air layer and the sorption increment with the soil drying.  相似文献   

3.
4.
5.
Ammonia (NH3) emission from livestock manures used in agriculture reduces N uptake by crops and negatively impacts air quality. This laboratory study was conducted to evaluate NH3emission from different livestock manures applied to two soils: Candler fins sand (CFS; light-textured soil, pH 6.8 and field capacity soil water content of 70 g kg? 1) from Lake Alfred, Florida and Ogeechee loamy sand (OLS; medium-textured soil, pH 5.2 and field capacity soil water content of 140 g kg? 1) from Savannah, Georgia. Poultry litter (PL) collected from a poultry farm near Douglas, Georgia, and fresh solid separate of swine manure (SM) collected from a farm near Clinton, North Carolina were used. Each of the soil was weighed in 100 g sub samples and amended with either PL or SM at rates equivalent to either 0, 2.24, 5.60, 11.20, or 22.40 Mg ha? 1 in 1L Mason jars and incubated in the laboratory at field capacity soil water content for 19 days to monitor NH3 volatilization. Results indicated a greater NH3 loss from soils amended with SM compared to that with PL. The cumulative NH3volatilization loss over 19 days ranged from 4 to 27% and 14 to 32% of total N applied as PL and SM, respectively. Volatilization of NH3 was greater from light-textured CFS than that from medium-textured OLS. Volatilization loss increased with increasing rates of manure application. Ammonia volatilization was lower at night time than that during the day time. Differences in major factors such as soil water content, temperature, soil type and live stock manure type influenced the diurnal variation in volatilization loss of NH3 from soils. A significant portion (> 50%) of cumulative NH3 emission over 19 d occurred during the first 5–7 d following the application of livestock manures. Results of this study demonstrate that application of low rates of livestock manure (≤ 5.60 Mg ha? 1) is recommended to minimize NH3 emissions.  相似文献   

6.
采用自主设计的30 kW大功率微波设备开展了含油污泥微波热解的现场实验,考察了吸波剂种类和添加量、热解终温、微波辐照时间、污泥处理量等对微波热解处理效果的影响.结果表明,污泥热解残渣可以作为吸波剂提高含油污泥的微波热解处理效果,综合考虑热解效果和成本,其较佳的添加量为5%(质量分数),此时污泥的除油率可达99.84%;随着热解终温的升高,污泥的除油率逐渐升高,当热解终温达到500℃时,处理后污泥的含油率降为0.200%(质量分数,下同),满足《农用污泥中污染物控制标准》(GB 4284-84)的限值标准(石油类限值为0.3%(质量分数));微波辐照时间对含油污泥的热解效果影响较显著,当微波辐照时间达到180 min时,处理后污泥含油率仅为0.230%;含油污泥处理量低于20 kg/次时,单位质量含油污泥完成热解消耗的电量随着处理量的增加而减少,而超过20 kg/次时,耗电量随着处理量的增加而增加,因此本实验所用设备较经济的含油污泥处理量为20 kg/次.  相似文献   

7.
Several simple models for the estimation of the half-life (t(1/2)) for the depletion of an organic chemical from a soil surface to air were examined. For moist surfaces, two models are proposed: the first requires knowledge of the soil/organic carbon partition coefficient (K(oc)) and the Henry's law constant (H) and the second the vapor pressure (P(s)) of the chemical involved. Due to uncertainties in the experimental K(oc) values those ones predicted by the group-contribution model of Meylan et al. [Environ. Sci. Technol. 26 (1992) 1560]-and proposed by the U.S. Environmental Protection Agency (EPA)-should be used. If reliable experimental P(s) values are not available, the first model is proposed, where in cases when H values are not available, predicted ones by the Bond-Contribution method of Meylan and Howard [Environ. Toxicol. Chem. 10 (1991) 1283]-and also proposed by EPA-can be used. In general, the agreement of the predicted t(1/2) values with the measured ones is within a factor of 3-5. Similar expressions, but with somewhat poorer results, are presented for dry field soils. In all cases, the obtained results represent a substantial improvement over those obtained with the currently used Dow method: t(1/2) = 1.58 x 10(-8)((K(oc) x S)/P(S)), where S is the solubility of the compound in water.  相似文献   

8.
Effect of a cationic surfactant on the volatilization of PAHs from soil   总被引:1,自引:0,他引:1  

Purpose

Cationic surfactants are common in soils because of their use in daily cosmetic and cleaning products, and their use as a soil amendment for the mitigation and remediation of organic contaminated soils has been proposed. Such surfactant may affect the transfer and fate of organic contaminants in the environment. This study investigated the effect of a cationic surfactant, dodecylpyridinium bromide (DDPB), on the volatilization of polycyclic aromatic hydrocarbons (PAHs) from a paddy soil.

Materials and methods

The volatilization of PAHs from moist soil amended with different concentrations of DDPB was tested in an open system. The specific effects of DDPB on the liquid?Cvapor and solid?Cvapor equilibriums of PAHs were separately investigated in closed systems by headspace analysis.

Results and discussion

DDPB affects both liquid?Cvapor and solid?Cvapor processes of PAHs in soil. At DDPB concentrations below the critical micelle concentration (CMC), movement of PAHs from the bulk solution to the gas?Cliquid interface appeared to be facilitated by interaction between PAHs and the surfactant monomers adsorbed at the gas?Cliquid interface, promoting the volatilization of PAHs from solution. However, when DDPB was greater than the CMC, volatilization was inhibited due to the solubilization of PAHs by micelles. On the other hand, the formation of sorbed surfactant significantly inhibited the solid?Cvapor volatilization of PAHs.

Conclusions

The overall effect of the two simultaneous effects of DDPB on liquid?Cvapor and solid?Cvapor processes was a decreased volatilization loss of PAHs from soil. Inhibition of PAH volatilization was more significant for the soil with a lower moisture content.  相似文献   

9.
Ammonia volatilization from crop residues and frozen green manure crops   总被引:1,自引:0,他引:1  
Agricultural systems can lose substantial amounts of nitrogen (N). To protect the environment, the European Union (EU) has adopted several directives that set goals to limit N losses. National Emission Ceilings (NEC) are prescribed in the NEC directive for nitrogen oxides and ammonia. Crop residues may contribute to ammonia volatilization, but sufficient information on their contribution to the national ammonia volatilization is lacking. Experiments were carried out with the aim to assess the ammonia volatilization of crop residues left on the soil surface or incorporated into the soil under the conditions met in practice in the Netherlands during late autumn and winter.Ammonia emission from residues of broccoli, leek, sugar beet, cut grass, fodder radish (fresh and frozen) and yellow mustard (frozen) was studied during two winter seasons using volatilization chambers. Residues were either placed on top of soil or mixed with soil. Mixing residues with soil gave insignificant ammonia volatilization, whereas volatilization was 5–16 percent of the N content of residues when placed on top of soil.Ammonia volatilization started after at least 4 days. Total ammonia volatilization was related to C/N-ratio and N concentration of the plant material. After 37 days, cumulative ammonia volatilization was negligible from plant material with N concentration below 2 percent, and was 10 percent of the N content of plant material with 4 percent N. These observations can be explained by decomposition of plant material by micro-organisms. After an initial built up of the microbial population, NH4+ that is not needed for their own growth is released and can easily emit as NH3 at the soil surface.The results of the experiments were used to estimate the contribution of crop residues to ammonia volatilization in the Netherlands. Crop residues of arable crops and residues of pasture topping may contribute more than 3 million kg NH3–N to the national ammonia volatilization of the Netherlands, being more than 3 percent of the national emissions in 2005. This contribution should therefore be considered when focusing on the national ceilings for ammonia emissions.  相似文献   

10.
Volatilization of pesticides participates in atmospheric contamination and affects environmental ecosystems including human welfare. Modelling at relevant time and spatial scales is needed to better understand the complex processes involved in pesticide volatilization. Volt'Air-Pesticides has been developed following a two-step procedure to study pesticide volatilization at the field scale and at a quarter time step. Firstly, Volt'Air-NH3 was adapted by extending the initial transfer of solutes to pesticides and by adding specific calculations for physico-chemical equilibriums as well as for the degradation of pesticides in soil. Secondly, the model was evaluated in terms of 3 pesticides applied on bare soil (atrazine, alachlor, and trifluralin) which display a wide range of volatilization rates. A sensitivity analysis confirmed the relevance of tuning to Kh. Then, using Volt'Air-Pesticides, environmental conditions and emission fluxes of the pesticides were compared to fluxes measured under 2 environmental conditions. The model fairly well described water temporal dynamics, soil surface temperature, and energy budget. Overall, Volt'Air-Pesticides estimates of the order of magnitude of the volatilization flux of all three compounds were in good agreement with the field measurements. The model also satisfactorily simulated the decrease in the volatilization rate of the three pesticides during night-time as well as the decrease in the soil surface residue of trifluralin before and after incorporation. However, the timing of the maximum flux rate during the day was not correctly described, thought to be linked to an increased adsorption under dry soil conditions. Thanks to Volt'Air's capacity to deal with pedo-climatic conditions, several existing parameterizations describing adsorption as a function of soil water content could be tested. However, this point requires further investigation. Practically speaking, Volt'Air-Pesticides can be a useful tool to make decision about agricultural practices such as incorporation or for the estimation of overall pesticide volatilization rates, and it holds promise for time specific dynamics.  相似文献   

11.
A vertically averaged two-dimensional model was developed to describe areal spreading and migration of light nonaqueous-phase liquids (LNAPLs) introduced into the subsurface by spills or leaks from underground storage tanks. The NAPL transport model was coupled with two-dimensional contaminant transport models to predict contamination of soil gas and groundwater resulting from a LNAPL migrating on the water table. Numerical solutions were obtained by using the finite-difference method. Simulations and sensitivity analyses were conducted with a LNAPL of pure benzene to study LNAPL migration and groundwater contamination. The model was applied to subsurface contamination by jet fuel. Results indicated that LNAPL migration were affected mostly by volatilization. The generation and movement of the dissolved plume was affected by the geology of the site and the free-product plume. Most of the spilled mass remained as a free LNAPL phase 20 years after the spill. The migration of LNAPL for such a long period resulted in the contamination of both groundwater and a large volume of soil.  相似文献   

12.
The effect of soil properties on the retention of kerosene in soils, at equilibrium and under venting, was studied. Eleven soils were studied, which represent a wide range of chemical properties and mechanical composition. The retention of kerosene in dry soils ranges from 3.5 to 18.1 mL/(100 g), and was related linearly to clay, silt and organic matter (OM) contents. A coarsely-aggregated dry vertisol (2–5 mm aggregates) retained half as much kerosene as its finely-aggregated (<2 mm) counterpart. Moisture content had a strong inverse effect on kerosene retention. The soil factors that inversely affected kerosene retention also enhanced kerosene stripping by venting. Of these, soil aggregation and porosity were the most important. In addition, kerosene volatilized faster and more completely from an initially moist soil, as compared with an initially dry soil. Differential volatilization of lighter components of kerosene changed the chemical composition of the residue in the soil substantially, as compared with the initial composition.  相似文献   

13.
《Chemosphere》2007,66(11):2216-2222
Five strains of basidiomycetes (Lentinula edodes, Coprinus phlyctidosporus, Hebeloma vinosophyllum, Pleurotus ostreatus and Agaricus bisporus), one strain of ascomycete (Hormoconis resinae) and six strains of imperfect fungi (Penicillium chrysogenum, Penicillium roquefortii, Cladosporium cladosporioides, Alternaria alternata, Aspergillus niger and Aspergillus oryzae) were cultured in a liquid medium containing a radioactive iodine tracer (125I), and were tested for their abilities to volatilize or accumulate iodine. Of the fungal strains tested, 11 strains volatilized a considerable amount of iodine, with L. edodes showing the highest volatilization rate of 3.4%. The volatile organic iodine species emitted from imperfect fungi cultures was identified as methyl iodide (CH3I). In contrast, six fungal strains in 12 strains accumulated a considerable amount of iodine from the medium with concentration factors of more than 1.0. Among these, Alt. alternata and Cl. cladosporioides accumulated more than 40% of the iodine in their hyphae, and showed high concentration factors of 22 and 18, respectively. These results suggest that filamentous fungi have a potential to influence the mobility and speciation of iodine by volatilization and accumulation. Considering their great biomass in soils, filamentous fungi may contribute to the global circulation of stable iodine and also the long-lived radioiodine, 129I (half-life: 1.6 × 107 years), released from nuclear facilities into the environment.  相似文献   

14.
Ban-nai T  Muramatsu Y  Amachi S 《Chemosphere》2006,65(11):2216-2222
Five strains of basidiomycetes (Lentinula edodes, Coprinus phlyctidosporus, Hebeloma vinosophyllum, Pleurotus ostreatus and Agaricus bisporus), one strain of ascomycete (Hormoconis resinae) and six strains of imperfect fungi (Penicillium chrysogenum, Penicillium roquefortii, Cladosporium cladosporioides, Alternaria alternata, Aspergillus niger and Aspergillus oryzae) were cultured in a liquid medium containing a radioactive iodine tracer (125I), and were tested for their abilities to volatilize or accumulate iodine. Of the fungal strains tested, 11 strains volatilized a considerable amount of iodine, with L. edodes showing the highest volatilization rate of 3.4%. The volatile organic iodine species emitted from imperfect fungi cultures was identified as methyl iodide (CH3I). In contrast, six fungal strains in 12 strains accumulated a considerable amount of iodine from the medium with concentration factors of more than 1.0. Among these, Alt. alternata and Cl. cladosporioides accumulated more than 40% of the iodine in their hyphae, and showed high concentration factors of 22 and 18, respectively. These results suggest that filamentous fungi have a potential to influence the mobility and speciation of iodine by volatilization and accumulation. Considering their great biomass in soils, filamentous fungi may contribute to the global circulation of stable iodine and also the long-lived radioiodine, 129I (half-life: 1.6 × 107 years), released from nuclear facilities into the environment.  相似文献   

15.
16.
17.
Head lettuce plantlets (Lactuca sativa L. var. capitata) were potted, treated with vinclozolin at the six-leaf stage according to application standards and allowed to dry for 24 h. The potted plantlets were then placed in either growth chambers with controlled temperature (20 and 25 degrees C, respectively) or in a greenhouse (approximately 12 degrees C), together with untreated spinach (Spinacia oleracea L.) and standardized grass cultures (Lolium multiflorum Lam. ssp.) While the treated lettuce pots remained in the respective growing compartments until the end of the experiments, spinach and grass were exposed to the compartment air for 24 h and their shoot material was analyzed for vinclozolin by GC-ECD and GC-high resolution mass spectrometry. Exposure and analysis of untreated spinach and grass were carried out at two- or three-day intervals during the course of the experiments. Also, air samples were taken from the compartments at intervals and analyzed for vinclozolin. Maximum vinclozolin concentration in the growth chamber air was about 330 ng m(-3) while vinclozolin contamination of the untreated plants ranged from 50 to 200 microg kg(-1) FW (fresh weight). In the greenhouse atmospheric vinclozolin concentration reached approximately 15 ngm(-3) and maximum contamination of spinach and grass were 30-40 microg kg(-1) FW. Our data clearly show that unintended contamination of plants growing in the vicinity of vinclozolin-treated plants can occur even if the fungicide layer is completely dry. Implications for safety testing and food plants are discussed.  相似文献   

18.
Environmental Science and Pollution Research - A large amount of ammonia volatilization from the agricultural system causes environmental problems and increases production costs. Conservation...  相似文献   

19.
R.E. Rathbun  D.Y. Tai 《Chemosphere》1984,13(7):715-730
A nonlinear least squares procedure and a log transformation procedure for calculating first-order rate coefficients from experimental concentration-versus-time data were compared using laboratory measurements of the volatilization from water of 1,1,1-trichloroethane and 1,2-dichloroethane and the absorption of oxygen by water. Ratios of the nonlinear least squares to log transformation volatilization and absorption coefficients for 77 tests ranged from 0.955 to 1.08 and averaged 1.01. Comparison of the maximum, minimum, and mean root-mean-square errors of prediction for six sets of coefficients showed that the errors for the nonlinear least squares procedure were almost always smaller than the errors for the log transformation procedure.  相似文献   

20.
Zhu JP  Zhang JS  Shaw CY 《Chemosphere》2001,44(5):1253-1257
Measured emission factors are the experimental data used to represent emission characteristics of volatile organic compounds (VOCs) from testing materials under dynamic chamber test conditions. A simple empirical model that describes the measured emission factors will be very useful for practical purposes. In this study, a power law model was compared with a widely used first-order exponential decay model in their ability to describe measured emission factors of wood-based panel materials. It was demonstrated that the power law model is a better choice than the first-order model for describing emission characteristics for short-term (less than 100 h) experimental data. The power law model was also more superior in predicting long-term (up to 900 h) emission factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号