首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shen G  Lu Y  Zhou Q  Hong J 《Chemosphere》2005,61(8):1175-1182
Actions and interactions of heavy metals (cadmium, zinc and plumbum) and polycyclic aromatic hydrocarbons (PAHs) [phenanthrene, fluoranthene, benzo(a)pyrene] on the soil urease and dehydrogenase activity were studied after 49 days exposure. The experimental approach was based on the uniform design which can cut the experiment time and improve the efficiency of experiments. Data treatment was essentially based on the multiple regression technique. The results showed that the action and interaction between heavy metals and PAHs were strongly dependent on the time of pollution. The dehydrogenase exhibits more sensitive to the combined pollution than urease. The negative interaction between Zn and Cd to hydrogenase activity and the combined stimulatory activity of Phenanthrene and Benzo(a)pyrene (or fluoranthene) to soil enzyme were observed. The interactions between Zn (Cd) and phenanthrene towards urease (dehydrogenase) were positive, and the interaction between Zn and benzo(a)pyrene to urease activity was negative. This study corresponds to exploratory phase in order to reveal interaction effects of heavy metals and PAHs on the soil enzyme and then to set up more in-depth analysis to increase progressively the understanding of the ecotoxicological mechanisms involved.  相似文献   

2.
Oleszczuk P 《Chemosphere》2006,65(9):1616-1626
The application of sewage sludge as a fertilizer is a common method used to improve soil properties. However, sewage sludge may contain various organic pollutants including polycyclic aromatic hydrocarbons. In the present study, the persistence of PAHs in soils fertilized with different sewage sludge doses was compared in relation to the sewage sludge dose applied (30, 75, 150, 300 and 600 Mgha(-1)) and the content of the polycyclic aromatic hydrocarbons in them. The experiment was carried out in two blocks of experimental plots divided according to the type of plants grown: field plants and perennial-willow. Sewage sludge addition to soils resulted in an increase in the content of polycyclic aromatic hydrocarbons in these soils. This increase was proportional to the quantity of sewage sludge applied. The results obtained showed that during a 42/54-month period, more than half of the individual PAHs introduced into the soil with sewage sludge were degraded. The scope of dissipation depended on the sewage sludge dose and the use to which the area was put. In the experiment with the willow only in the case of the highest sludge dose was a decrease in the PAH content above 50% noted; whereas in the case of the experiment with the field plants, it was higher by 50% for all sewage sludge doses. In experiment with field plants the highest scope of individual PAH disappearance was observed in the soil with the sewage sludge dose amounting to 300 Mgha(-1). In experiment with willow a relatively high dissipation of individual PAHs (>50%) was found in the treatment with the highest sludge dose (600 Mgha(-1)). A wider PAH dissipation range in the experiment with field plants was conditioned by the more favourable conditions created as a result of the breeding treatments applied. Agrotechnical treatments clearly increased the disappearance of the PAHs in those soils fertilized with the lowest sewage sludge doses (30 and 75 Mgha(-1)). The results obtained showed that the preferred method of treating a light soil fertilised with sewage sludges should be a one-year system, with a sludge application of 75 Mgha(-1).  相似文献   

3.
This paper presents results on the presence and temporal variability of the 16 PAHs recommended by the EPA in primary, secondary and digested sewage sludge over a year. The sewage sludges originated from the Guadalete wastewater treatment plant (WWTP) site in Jerez de la Frontera (Cádiz, Spain). These organic pollutants have been extracted from the sewage sludge by microwave energy. High performance liquid chromatography coupled with diode array (HPLC-DAD) or fluorescence (HPLC-FL) detectors have been used. The results showed that total PAHs concentration varied between 1,945 ng g(-1) dry matter (DM) for primary sludges collected in March and 10,100 ng g(-1) DM for primary sludge collected in June. Generally, concentrations of PAHs were higher in compost and digested sludge than in fresh one. On the other hand, the highest concentration of PAHs were found on summer. This thing is associated to the traffic increase from inland zones to the coast (Jerez de la Frontera is very near to beaches). Finally, this paper present a comparative study of the American an European legislation concluding that the limits of concentrations established are not exceeded. In addition heavy metals were analysed. The origin of PAHs and heavy metals seems to be different.  相似文献   

4.
Kim YJ  Osako M 《Chemosphere》2003,51(5):387-395
In order to evaluate the factors affecting leachability of hydrophobic organic pollutants (HOPs), we performed leaching tests under a variety of conditions using sandy soil contaminated with phenanthrene and pyrene. The results obtained were: (1) the shaking time, temperature, and dissolved humic matter (DHM, as coexisting matter) increased leachability; (2) ionic strength reduced leachability; and (3) the liquid-to-solid ratio and pH level had no effect on leaching concentration of HOPs. In DHM-added leaching tests assuming equilibrium with HOPs, DHM, and solid matrix, the partitioning (binding) coefficient of HOPs to DHM was accurately calculated with the equations proposed in this study. While we recommend taking into consideration the coexistence of DHM, it is difficult to use universally because its properties differ according to origin and extracting method. It is therefore reasonable to use an alternative reagent having an effect similar to that of DHM.  相似文献   

5.
Sharma H  Jain VK  Khan ZH 《Chemosphere》2007,66(2):302-310
This paper reports on polycyclic aromatic hydrocarbons (PAHs) in the atmospheric particulate matter of Jawaharlal Nehru University campus, an urbanized site of New Delhi, India. Suspended particulate matter samples of 24h duration were collected on glass-fiber filter paper for four representative days in each month during January 2002 to December 2003. PAHs were extracted from filter papers using toluene with ultrasonication method and analysed. Quantitative measurements of polycyclic aromatic hydrocarbons (PAHs) were carried out using the gas chromatography technique. The annual average concentration of total PAHs were found to be 668+/-399 and 672+/-388 ng/m3 in the years 2002 and 2003, respectively. The seasonal average concentrations were found to be maximum in winter and minimum during in the monsoon. The results of principal component analysis (PCA) indicate that diesel and gasoline driven vehicles are the principal sources of PAHs in all the seasons. In winter coal and wood combustion also significantly contribute to the PAH levels.  相似文献   

6.
7.
Qian Y  Posch T  Schmidt TC 《Chemosphere》2011,82(6):859-865
Sorption of polycyclic aromatic hydrocarbons (PAHs) to glass commonly used in laboratories was studied. Sorption coefficients (Kd) of five selected PAHs to borosilicate glass surfaces were measured using column chromatography. A linear relationship between log Kd and the corresponding water solubility of the subcooled liquid (log Sw) of the investigated PAHs was observed. Based on the determined sorption coefficients our data revealed that mass loss caused by sorption on glass walls strongly depends on the ratio of solution volume to contacted surface area (V/S). The influence of solution chemistry such as ionic strength, solution pH, presence of cosolvent, and the influence of temperature on the sorption process were investigated. In the presence of ionic strength, sorption coefficients concurrently increased but less than a factor of 2 up to 0.005 M calcium chloride concentration. However, further increasing ionic strength had no influence on Kd. The cosolvent reduced sorption at a concentration of methanol in water above 0.5% (v/v); however, for benzo[a]pyrene even with 10% (v/v) methanol the mass loss would be still higher than 10% (with a V/S ratio less than 0.25). Significant effects of the solution pH and temperature were not observed. These results suggest that van der Waal’s forces dominate the sorption process. In the analysis of highly hydrophobic PAHs in aqueous samples, mass loss due to sorption on glass walls should be accounted for in the final result if untreated glass is used. The presented relationship between log Kd and log Sw may help to decide if such a correction is necessary. Furthermore, the frequently used silanization of glass surfaces may not be sufficient to suppress sorption for large PAHs.  相似文献   

8.
Temporal and seasonal variations of polycyclic aromatic hydrocarbons (PAHs) concentrations in leaves of Ficus benghalensis were investigated in Varanasi city (India). Leaf samples were collected from six sites from urban area of Varanasi and from a control site. PAH extraction was done by sonication in dichloromethane-acetone and quantification by GC-MS. In January total leaf PAHs concentrations at all the urban sites were twice higher as compared to other season's viz. summer and rainy. In contrast, at the control site leaf PAHs concentrations showed lower values than urban sites. The maximum concentrations of total PAHs in winter were due to the medium molecular weight PAHs which increases with respect to both low and high molecular weight PAHs. The temporal variation of medium molecular weight PAHs was similar both at the urban and remote sites. These results support biomonitoring ability of Ficus benghalensis leaves to temporal variations in PAHs contamination.  相似文献   

9.
We report on sorption isotherm of phenanthrene (Phe) for river floodplain soil associated with carbonaceous materials, with particular attention being devoted to the natural loading of Phe. Our sorption experiments with original soil samples, size, and density sub-fractions showed that the light fraction had the highest sorption capacity comparable to low rank coals. In addition, the light fraction contributed most for the sorption of Phe in total soil samples. Koc values for all fractions were in the same range, thus indicating that coal and coal-derived particles in all samples are responsible for the enhanced sorption for Phe. Sorption was strongly nonlinear and the combined partitioning and pore-filling model gave a better fit than the Freundlich sorption model. In addition, the spiked PAHs did not show the same behavior as the naturally aged ones, therefore the accessibility of indigenous background organic contaminants was reduced when coal and coal-derived particles are associated with the soils.  相似文献   

10.
A PAH contaminated river floodplain soil was separated according to grain size and density. Coal and coal-derived particles from coal mining, coal industry and coal transportation activities were identified by organic petrographic analysis in our samples. Distinct concentrations of PAHs were found in different grain size and density fractions, however, similar distribution patterns of PAHs indicated similar sources. In addition, although light fractions had the mass fraction by weight of less than 5%, they contributed almost 75% of the total PAHs in the soil. PAH concentrations of all sub fractions showed positive correlation with their TOC contents. Altogether, coal and coal-derived particles that were abundant in light fractions could be the dominant geosorbents for PAHs in our samples.  相似文献   

11.
A regression model based on the provincial energy consumption data was developed to calculate the monthly proportions of residential energy consumption compared to the total year volume. This model was also validated by comparing with some survey and statistical data. With this model, a PAHs emission inventory with seasonal variation was developed. The seasonal variations of different sources in different regions of China and the spatial distribution of the major sources in different seasons were also achieved. The PAHs emissions were larger in the winter than in the summer, with a difference of about 1.3-folds between the months with the largest and the smallest emissions. Residential solid fuel combustion dominated the pattern of seasonal variation with the winter-time emissions as much as 1.6 times as that in the summer, while the emissions from wild fires and open fire straw burning was mainly concentrated during the spring and summer.  相似文献   

12.
The paper provides comprehensive information on the level of contamination of arable soils in Poland with polycyclic aromatic hydrocarbons (PAHs). Extensive monitoring studies were carried out to determine the content of the 16 priority PAHs in 216 soil samples collected in 2005 throughout arable lands (0-20 cm layer) in Poland. Locations of sampling points reflected the differences in regional industrialisation and urbanisation as well as in the characteristics of soils. The content of Sigma16PAHs ranged from 80 to 7264 microg kg(-1) with a median of 395 microg kg(-1) and with a dominance of 4-6 rings hydrocarbons (74% of total PAHs). Soil properties affected the PAHs content to a limited extend. The organic matter content was the only parameter correlated significantly (although weakly) with the concentrations of Sigma16PAHs; the strength of this relationship was more pronounced in soils with elevated OM content. The various molecular markers pointed to a prevailing pyrogenic origin of the PAHs in Polish arable soils, with minor contribution from liquid fuels combustion and traffic emissions. Two different Polish systems for classification of agricultural soils (providing for the content of Sigma9PAHs and Sigma13PAHs) indicate that the percentage of contaminated arable soils in Poland does not exceed 10%. Multivariate methods enabled an evaluation of spatial trends in Sigma16PAHs concentrations, an identification of regions with very low PAHs content (East part of the country), and a recognition of small industrial/urbanised areas of higher risk.  相似文献   

13.
The knowledge on the distribution of hydrophobic organic contaminants in soils can provide better understanding for their fate in the environment. In the present study, the n-butanol extraction and humic fractionation were applied to investigate the impact of SOM on the distribution of polycyclic aromatic hydrocarbons (PAHs). The results indicated that 80.5%-94.8% of the target PAHs could be extracted by n-butanol and 63.1%-94.6% of PAHs were associated with fulvic acid (FA). Concentrations of un-extracted PAHs increased significantly with the increasing soil organic matter (SOM), however, such an association was absent for the extractable fractions. The results suggested that the sequestration played a critical role in the accumulation of PAHs in soils. SOM also retarded the diffusion of PAHs into the humin fractions. It implied that sequestration in SOM was critical for PAH distribution in soils, while the properties of PAH compounds also had great influences.  相似文献   

14.
燃煤电厂多环芳烃的生成与控制   总被引:2,自引:0,他引:2  
多环芳烃 (PAHs)对人体健康的危害极大。本文综述了燃煤电厂煤燃烧过程中多环芳烃的生成机理 (直接释放、热解合成和高温缩合机理 )和影响因素 (煤种、温度、锅炉负荷、过剩空气系数、停留时间、钙硫比和一次风 /二次风比 ) ,在此基础上介绍了煤燃烧过程中多环芳烃的各种控制技术和方法  相似文献   

15.
INTRODUCTION: Exposure to trace metals and polycyclic aromatic hydrocarbons (PAHs) adsorbed on particulates is of a serious health concern. Levels of some trace metals in total suspended particulate and 13 PAHs of fine particulate matter were measured from nomadic tents in the southern Tibetan Plateau in summer 2010. RESULTS AND DISCUSSION: The indoor air within the tents was seriously polluted, mainly due to yak dung combustion. Average trace metal concentrations were much higher (range of indoor/outdoor ratio 61-291) than those of the outdoor air. Additionally, enrichment factors of most trace metals of indoor air were similar to those of outdoor air, indicating outdoor air quality of the studied area was possibly influenced by pollutants emitted from local tents. Mean concentrations of total PAHs and BaP within tents was 5372.45 and 364.79 ng/m(3), hundred times higher than that of outdoor air of the Tibetan Plateau. Three- and four-ring PAHs were the predominant components. The diagnostic ratio of BaA/(BaA + Chr) was 0.33. Since Tibetan women typically spend longer time within the tents, they were exposed to PAHs (BaP exposure = 1.81 μg/m(3)) about two times of other family members. Among all the PAHs, Bap contributed the most (82.6%) of the total carcinogenicity. Similarly, the excess lifetime cancer risk for women and other family members were 2.75 × 10(-4) and 1.27 × 10(-4), respectively, indicating Tibetan herdsmen, especially women who are in charge of most house chores were at risk for adverse health effects.  相似文献   

16.
We determined concentrations, sources, and vertical distribution of OPAHs and PAHs in soils of Bratislava. The ∑14 OPAHs concentrations in surface soil horizons ranged 88-2692 ng g−1 and those of ∑34 PAHs 842-244,870 ng g−1. The concentrations of the ∑9 carbonyl-OPAHs (r = 0.92, p = 0.0001) and the ∑5 hydroxyl-OPAHs (r = 0.73, p = 0.01) correlated significantly with ∑34 PAHs concentrations indicating the close association of OPAHs with parent-PAHs. OPAHs were quantitatively dominated by 9-fluorenone, 9,10-anthraquinone, 1-indanone and benzo[a]anthracene-7,12-dione. At several sites, individual carbonyl-OPAHs had higher concentrations than parent PAHs. The concentration ratios of several OPAHs to their parent-PAHs and contribution of the more soluble OPAHs (1-indanone and 9-fluorenone) to ∑14 OPAHs concentrations increased with soil depth suggesting that OPAHs were faster vertically transported in the study soils by leaching than PAHs which was supported by the correlation of subsoil:surface soil ratios of OPAH concentrations at several sites with KOW.  相似文献   

17.
In the present study, the amounts of polycylic aromatic hydrocarbons (PAHs) penetrating into air during PAH removal applications from the urban treatment sludge were investigated. The effects of the temperature, photocatalyst type, and dose on the PAH removal efficiencies and PAH evaporation were explained. The sludge samples were taken from an urban wastewater treatment plant located in the city of Bursa, with 585,000 equivalent population. The ultraviolet C (UV-C) light of 254 nm wavelength was used within the UV applications performed on a specially designed setup. Internal air of the setup was vacuumed through polyurethane foam (PUF) columns in order to collect the evaporated PAHs from the sludge during the PAH removal applications. All experiments were performed with three repetitions. The PAH concentrations were measured by gas chromatography–mass spectrometry (GC-MS). It was observed that the amounts of PAHs penetrating into the air were increased with increase of temperature, and more than 80% of PAHs migrated to the air consisted of 3-ring compounds during the UV and UV-diethylamine (DEA) experiments at 38 and 53 °C. It was determined that 40% decrease was ensured in Σ12 (total of 12) PAH amounts with UV application and 13% of PAHs in sludge penetrated into the air. In the UV-TiO2 applications, a maximum 80% of Σ12 PAH removal was obtained by adding 0.5% TiO2 of dry weight of sludge. The quantity of PAH penetrating into air did not exceed 15%. UV-TiO2 applications ensured high levels of PAH removal in the sludge and also reduced the quantity of PAH penetrating into the air. Within the scope of the samples added with DEA, there was no increase in PAH removal efficiencies and the penetration of PAHs into air was not decreased. In light of these data, it was concluded that UV-TiO2 application is the most suitable PAH removal alternative that restricts the convection of PAH pollution.
Implications: Polycyclic aromatic hydrocarbon (PAH) evaporation rates from sludge samples obtained from an urban wastewater treatment plant were investigated here for the first time by employing removal applications. TiO2 and diethylamine were used as photocatalysts in this study. A special device was designed and successfully used in this study. Treatment sludge can be a significant source of PAHs for the atmosphere. The data highlight the need for removal of PAHs in treatment sludge via methods limiting their evaporation to the air. It was observed that UV-TiO2 application was the most suitable PAH removal alternative that restricts the convection of PAH pollution.  相似文献   

18.
Due to concerns about adverse health effects associated with inhalation of atmospheric polycyclic aromatic hydrocarbons (PAHs), 30 ambient air samples were obtained at an air quality monitoring station in Palm Beach County, Florida, from March 2013 to March 2014. The ambient PAH concentration measurements and fractional emission rates of known sources were incorporated into a chemical mass balance model, CMB8.2, developed by EPA, to apportion contributions of three major PAH sources including preharvest sugarcane burning, mobile vehicles, and wildland fires. Strong association between the number of benzene rings and source contribution was found, and mobile vehicles were identified to be the prevailing source (contribution ≥56%) for the observed PAHs concentration with lower molecular weights (four or fewer benzene rings) throughout the year. Preharvest sugarcane burning was the primary contributing source for PAHs with relatively higher molecular weights (five or more benzene rings) during the sugarcane burning season (from October to May of the next year). Source contribution of wildland fires varied among PAH compounds but was consistently lower than for sugarcane burning during the sugarcane harvest season. Determining the major sources responsible for ground-level PAHs serves as a tool to improving management strategies for PAH emitting sources and a step toward better protection of the health of residents in terms of exposure to PAHs. The results obtain insight into temporal dominance of PAH polluting sources for those residential areas located near sugarcane burning facilities and have implications beyond Palm Beach County, in areas with high concerns of PAHs and their linked sources.

Implications: Source apportionment of atmospheric polycyclic hydrocarbons (PAHs) in Palm Beach County, Florida, meant to estimate contributions of major sources in PAH concentrations measured at Belle Glade City of Palm Beach County. Number of benzene rings was found to be the key parameter in determining the source with the prevailing contribution. Mobile vehicle sources showed a higher contribution for species with four or fewer benzene rings, whereas sugarcane burning contributed more for species with five or more benzene rings. Results from this study encourage more control for sugarcane burns and help to better manage authorization of the sugarcane burning incidents and more restrictive transportation plans to limit PAH emissions from mobile vehicles.  相似文献   

19.
The global atmospheric emissions of the 16 polycyclic aromatic hydrocarbons (PAHs) listed as the US EPA priority pollutants were estimated using reported emission activity and emission factor data for the reference year 2004. A database for emission factors was compiled, and their geometric means and frequency distributions applied for emission calculation and uncertainty analysis, respectively. The results for 37 countries were compared with other PAH emission inventories. It was estimated that the total global atmospheric emission of these 16 PAHs in 2004 was 520 giga grams per year (Gg y?1) with biofuel (56.7%), wildfire (17.0%) and consumer product usage (6.9%) as the major sources, and China (114 Gg y?1), India (90 Gg y?1) and United States (32 Gg y?1) were the top three countries with the highest PAH emissions. The PAH sources in the individual countries varied remarkably. For example, biofuel burning was the dominant PAH source in India, wildfire emissions were the dominant PAH source in Brazil, while consumer products were the major PAH emission source in the United States. In China, in addition to biomass combustion, coke ovens were a significant source of PAHs. Globally, benzo(a)pyrene accounted for 0.05% to 2.08% of the total PAH emission, with developing countries accounting for the higher percentages. The PAH emission density varied dramatically from 0.0013 kg km?2 y in the Falkland Islands to 360 kg km?2 y in Singapore with a global mean value of 3.98 kg km?2 y. The atmospheric emission of PAHs was positively correlated to the country's gross domestic product and negatively correlated with average income. Finally, a linear bivariate regression model was developed to explain the global PAH emission data.  相似文献   

20.
为了研究多环芳烃(PAHs)污染土壤堆肥修复的加速机制,在人工控温的堆肥装置中以芘、菲和芴为研究对象,采用室内模拟实验的方式研究了添加硫酸钙、过磷酸钙、草炭、竹炭、十二烷基硫酸钠(K12)和十二烷基苯磺酸钠(SD-BS)等对锯末高温堆肥降解污染土壤PAHs的影响。研究结果表明,生物堆肥可以有效的去除土壤中PAHs,堆肥7周后所有处理下芘、菲和芴的降解率基本达到80%以上。不同添加剂处理下芘、菲和芴降解率不同,尤其是添加草炭和竹炭处理中芴和菲在第4周的时候就取得90%以上的降解率,芘在第6周也取得80%以上的降解率,而且氮素的损失率也分别下降了42.6%和36.09%,比其他处理的PAHs降解率和保氮效果都要好。分析其原因,一方面可能是添加不同添加剂对堆肥过程中pH值、有机质(SOM)、总氮(TN)和过氧化氢酶(CAT)都有一定的影响,提高了土壤微生物的活性;另一方面可能是由于草炭和竹炭对氨有良好的吸附性,具有良好的保氮效果,同时也能改善了微生物和目标化合物的接触方式,从而提高了PAHs的降解率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号