首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specific second-order rate constants were determined for 5-FU and CAP with ozone. Reaction sites were confirmed by kinetics, Fukui analysis, and products. The olefin moiety was the main ozone reaction site for 5-FU and CAP. Carboxylic acids comprised most of the residual TOC for 5-FU. Ozonation removed the toxicity associated with 5-FU and products but not CAP. Anticancer drugs (ADs) have been detected in the environment and represent a risk to aquatic organisms, necessitating AD removal in drinking water and wastewater treatment. In this study, ozonation of the most commonly used antimetabolite ADs, namely 5-fluorouracil (5-FU) and its prodrug capecitabine (CAP), was investigated to determine reaction kinetics, oxidation mechanisms, and residual toxicity. The specific second-order rate constants between aqueous ozone and 5-FU, 5-FU, 5-FU2, CAP, and CAP were determined to be 7.07(±0.11)×104 M1·s1, 1.36(±0.06)×106 M1·s1, 2.62(±0.17)×107 M1·s1, 9.69(±0.08)×103 M1·s1, and 4.28(±0.07)×105 M1·s1, respectively; furthermore, the second-order rate constants for OH reaction with 5-FU and CAP at pH 7 were determined to be 1.85(±0.20)×109 M1·s1 and 9.95(±0.26)×109 M1·s1, respectively. Density functional theory was used to predict the main ozone reaction sites of 5-FU (olefin) and CAP (olefin and deprotonated secondary amine), and these mechanisms were supported by the identified transformation products. Carboxylic acids constituted a majority of the residual organic matter for 5-FU ozonation; however, carboxylic acids and aldehydes were important components of the residual organic matter generated by CAP. Ozone removed the toxicity of 5-FU to Vibrio fischeri, but the residual toxicity of ozonated CAP solutions exhibited an initial increase before subsequent removal. Ultimately, these results suggest that ozone is a suitable technology for treatment of 5-FU and CAP, although the residual toxicity of transformation products must be carefully considered.  相似文献   

2.
MC-LR removal performances under different AOPs were compared systematically. Higher removal efficiency and synergistic effects were obtained by combined process. The acute biotoxicity raised in different degrees after oxidation. Microcystin-LR attracts attention due to its high toxicity, high concentration and high frequency. The removal characteristics of UV/H2O2 and O3/H2O2 advanced oxidation processes and their individual process for MC-LR were investigated and compared in this study. Both the removal efficiencies and rates of MC-LR as well as the biotoxicity of degradation products was analyzed. Results showed that the UV/H2O2 process and O3/H2O2 were effective methods to remove MC-LR from water, and they two performed better than UV-, O3-, H2O2-alone processes under the same conditions. The effects of UV intensity, H2O2 concentration and O3 concentration on the removal performance were explored. The synergistic effects between UV and H2O2, O3 and H2O2 were observed. UV dosage of 1800 mJ·cm2 was required to remove 90% of 100 mg·L1 MC-LR, which amount significantly decreased to 500 mJ·cm2 when 1.7 mg·L1 H2O2 was added. 0.25 mg·L1 O3, or 0.125 mg·L1 O3 with 1.7 mg·L1 H2O2 was needed to reach 90% removal efficiency. Furthermore, the biotoxicity results about these UV/H2O2, O3/H2O2 and O3-alone processes all present rising trends with oxidation degree of MC-LR. Biotoxicity of solution, equivalent to 0.01 mg·L1 Zn2+, raised to 0.05 mg·L1 Zn2+ after UV/H2O2 or O3/H2O2 reaction. This phenomenon may be attributed to the aldehydes and ketones with small molecular weight generated during reaction. Advice about the selection of MC-LR removal methods in real cases was provided.  相似文献   

3.
The fiber length and packing density of the PTFE membrane element were increased. The MBR was stably operated under an SADm of 0.13 m3·m-2·hr-1. Specific energy consumption was estimated to be less than 0.4 kWh·m-3. In this study, we modified a polytetrafluoroethylene (PTFE) hollow-fiber membrane element used for submerged membrane bioreactors (MBRs) to reduce the energy consumption during MBR processes. The high mechanical strength of the PTFE membrane made it possible to increase the effective length of the membrane fiber from 2 to 3 m. In addition, the packing density was increased by 20% by optimizing the membrane element configuration. These modifications improve the efficiency of membrane cleaning associated with aeration. The target of specific energy consumption was less than 0.4 kWh·m-3 in this study. The continuous operation of a pilot MBR treating real municipal wastewater revealed that the MBR utilizing the modified membrane element can be stably operated under a specific air demand per membrane surface area (SADm) of 0.13 m3·m-2·hr-1 when the daily-averaged membrane fluxes for the constant flow rate and flow rate fluctuating modes of operation were set to 0.6 and 0.5 m3·m-2·d-1, respectively. The specific energy consumption under these operating conditions was estimated to be less than 0.37 kWh·m-3. These results strongly suggest that operating an MBR equipped with the modified membrane element with a specific energy consumption of less than 0.4 kWh·m-3 is highly possible.  相似文献   

4.
The UASB system successfully treated sulfamethoxazole pharmaceutical wastewater. High concentration sulfate of this wastewater was the main refractory factor. UASB recovery performance after a few days of inflow arrest was studied. The optimal UASB operating conditions for practical application were determined. Treatment of sulfamethoxazole pharmaceutical wastewater is a big challenge. In this study, a series of anaerobic evaluation tests on pharmaceutical wastewater from different operating units was conducted to evaluate the feasibility of using anaerobic digestion, and the results indicated that the key refractory factor for anaerobic treatment of this wastewater was the high sulfate concentration. A laboratory-scale up-flow anaerobic sludge blanket (UASB) reactor was operated for 195 days to investigate the effects of the influent chemical oxygen demand (COD), organic loading rate (OLR), and COD/SO42? ratio on the biodegradation of sulfamethoxazole in pharmaceutical wastewater and the process performance. The electron flow indicated that methanogenesis was still the dominant reaction although sulfidogenesis was enhanced with a stepwise decrease in the influent COD/SO42? ratio. For the treated sulfamethoxazole pharmaceutical wastewater, a COD of 4983 mg/L (diluted by 50%), OLR of 2.5 kg COD/(m3·d), and COD/SO42? ratio of more than 5 were suitable for practical applications. The recovery performance indicated that the system could resume operation quickly even if production was halted for a few days.  相似文献   

5.
The UF membrane fouling by down- and up-flow BAC effluents were compared. Up-flow BAC effluent fouled the membrane faster than down-flow BAC effluent. The combined effects dominated irreversible fouling. The extent of fouling exacerbated by inorganic particles was higher. The TMP, permeate flux, and normalized membrane flux during 21 days of UF of DBAC and UBAC effluents. Fouling during ultrafiltration of down- and up-flow biological activated carbon effluents was investigated to determine the roles of polysaccharides, proteins, and inorganic particles in ultrafiltration membrane fouling. During ultrafiltration of down- flow biological activated carbon effluent, the trans-membrane pressure was≤26 kPa and the permeate flux was steady at 46.7 L?m2?h1. However, during ultrafiltration of up-flow biological activated carbon effluent, the highest trans-membrane pressure was almost 40 kPa and the permeate flux continuously decreased to 30 L?m2?h1. At the end of the filtration period, the normalized membrane fluxes were 0.88 and 0.62 for down- and up-flow biological activated carbon effluents, respectively. The membrane removed the turbidity and polysaccharides content by 47.4% and 30.2% in down- flow biological activated effluent and 82.5% and 22.4% in up-flow biological activated carbon effluent, respectively, but retained few proteins. The retention of polysaccharides was higher on the membrane that filtered the down- flow biological activated effluent compared with that on the membrane that filtered the up-flow biological activated carbon effluent. The polysaccharides on the membranes fouled by up-flow biological activated carbon and down- flow biological activated effluents were spread continuously and clustered, respectively. These demonstrated that the up-flow biological activated carbon effluent fouled the membrane faster. Membrane fouling was associated with a portion of the polysaccharides (not the proteins) and inorganic particles in the feed water. When there was little difference in the polysaccharide concentrations between the feed waters, the fouling extent was exacerbated more by inorganic particles than by polysaccharides.  相似文献   

6.
7.
Fe2O3-CeO2-Bi2O3/γ-Al2O3, an environmental friendly material, was investigated. The catalyst exhibited good catalytic performance in the CWAO of cationic red GTL. The apparent activation energy for the reaction was 79 kJ·mol−1. HO2· and O2· appeared as the main reactive species in the reaction. The Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst, a novel environmental-friendly material, was used to investigate the catalytic wet air oxidation (CWAO) of cationic red GTL under mild operating conditions in a batch reactor. The catalyst was prepared by wet impregnation, and characterized by special surface area (BET measurement), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst exhibited good catalytic activity and stability in the CWAO under atmosphere pressure. The effect of the reaction conditions (catalyst loading, degradation temperature, solution concentration and initial solution pH value) was studied. The result showed that the decolorization efficiency of cationic red GTL was improved with increasing the initial solution pH value and the degradation temperature. The apparent activation energy for the reaction was 79 kJ·mol1. Hydroperoxy radicals (HO2·) and superoxide radicals (O2·) appeared as the main reactive species upon the CWAO of cationic red GTL.  相似文献   

8.
• Anammox is promising for nitrogen removal from antibiotic-containing wastewater. • Most antibiotics could inhibit the anammox performance and activity. • Antibiotic pressure promoted the increase in antibiotic resistance genes (ARGs). • Antibiotic-resistance mechanisms of anammox bacteria are speculated. Antibiotic is widely present in the effluent from livestock husbandry and the pharmaceutical industry. Antibiotics in wastewater usually have high biological toxicity and even promote the occurrence and transmission of antibiotic resistant bacteria and antibiotic resistance genes. Moreover, most antibiotic-containing wastewater contains high concentration of ammonia nitrogen. Improper treatment will lead to high risk to the surrounding environment and even human health. The anaerobic ammonium oxidation (anammox) with great economic benefit and good treatment effect is a promising process to remove nitrogen from antibiotic-containing wastewater. However, antibiotic inhibition has been observed in anammox applications. Therefore, a comprehensive overview of the single and combined effects of various antibiotics on the anammox system is conducted in this review with a focus on nitrogen removal performance, sludge properties, microbial community, antibiotic resistance genes and anammox-involved functional genes. Additionally, the influencing mechanism of antibiotics on anammox consortia is summarized. Remaining problems and future research needs are also proposed based on the presented summary. This review provides a better understanding of the influences of antibiotics on anammox and offers a direction to remove nitrogen from antibiotic-containing wastewater by the anammox process.  相似文献   

9.
The concentrations of four types of antibiotics in the Yitong River were detected. The concentration of total coliforms in summer was higher than that in spring. There was a seasonal difference in antibiotic resistance of E. coli. The E. coli in the Yitong River was found to have multiple antibiotic resistance. The Yitong River is one of the largest secondary tributaries of the Songhua River. The area where the Yitong River flows is densely populated and contains the livestock and poultry breeding areas of north-east China. These areas introduce a high risk of antibiotic contamination. In this study, the concentrations of four types of typical antibiotics including quinolones, tetracyclines, sulfonamides, and trimethoprim were determined by solid phase extraction-high performance liquid chromatography. The antibiotic resistance of Escherichia coli caused by antibiotic pollution was investigated. The concentration of total coliforms in the Yitong River was detected by the plate counting method. The antibiotic resistance of E. coli to quinolones, tetracyclines, sulfonamides, and trimethoprim was analyzed by the Kirby-Bauer method. The results showed that the concentration of total coliforms in the summer was higher than that in the spring. There was a seasonal difference in the resistance rate of E. coli to antibiotics except trimethoprim. The antibiotic resistance to fluoroquinolones was relatively low. The resistance rate to tetracyclines was higher during the summer. Moreover, resistance to several antibiotics was observed in all sections. This study provides basic data for research on pollution characteristics and prevention of antibiotic exposure in rivers.  相似文献   

10.
Linear, interactive and quadratic effects of process parameters were studied. Degradation of Ofloxacin (Ofx) was related with G value of irradiation process. The synergistic effect of H2O2 on lower dose of g-irradiation was established. The process follows pseudo first order with dose constant (d = 0.232 kGy1). The impact of human activities in the past few decades has paved the way for the release of pollutants due to the improper effluent treatment. Recent studies revealed that, Ofloxacin, an antibiotic as one of the major pollutant affecting surface water and ground water. In this study, the radiolytic potential of Ofloxacin was investigated. The effects of pH, dose and concentration of Ofloxacin were analyzed using One Factor At a Time (OFAT) and the interactive effects between the parameters were studied using Face Centered Central Composite Design. The statistically optimised developed model shows 30% degradation at initial antibiotic concentration of 1mM at pH 3.0 and at 2 kGy dose of gamma ray. The process efficiency was evaluated in terms of G value and its correlation with the concentration of antibiotic was also established. The process of degradation was augmented by the addition of H2O2 (1.5 mM). The reaction kinetics for the process was evaluated, the dose rate constant and the rate of degradation for the augmented process was found to be 0.232 kGy-1 and 0.232 mM/kGy, respectively. The degraded metabolites of the radiolytic degradation of Ofloxacin were analyzed through change in pH, reduction in TOC and GC-MS spectrum.  相似文献   

11.
• The MCNZVI is prepared as an interesting material for PS activation. • Graphitized carbon shells facilitate electron transfer from Fe0. • The MCNZVI exhibits excellent performance to degrade RB5 by 1O2. • The MCNZVI has high stability and reusability in the oxidation system. High-efficiency and cost-effective catalysts with available strategies for persulfate (PS) activation are critical for the complete mineralization of organic contaminants in the environmental remediation and protection fields. A nanoscale zero-valent iron-embedded modified mesoporous carbon (MCNZVI) with a core-shell structure is synthesized using the hydrothermal synthesis method and high-temperature pyrolysis. The results showed that nZVI could be impregnated within mesoporous carbon frameworks with a comparatively high graphitization degree, rich nitrogen doping content, and a large surface area and pore volume. This material was used as a persulfate activator for the oxidation removal of Reactive Black 5 (RB5). The effects of the material dosage, PS concentration, pH, and some inorganic anions (i.e., Cl, SO42) on RB5 degradation were then investigated. The highest degradation efficiency (97.3%) of RB5 was achieved via PS (20 mmol/L) activation by the MCNZVI (0.5 g/L). The pseudo-first-order kinetics (k = 2.11 × 102 min1) in the MCNZVI/PS (0.5 g/L, 20 mmol/L) was greater than 100 times than that in the MCNZVI and PS. The reactive oxygen species (ROS), including 1O2, SO4·, HO·, and ·O2, were generated by PS activation with the MCNZVI. Singlet oxygen was demonstrated to be the primary ROS responsible for the RB5 degradation. The MCNZVI could be reused and regenerated for recycling. This work provides new insights into PS activation to remove organic contamination.  相似文献   

12.
• Powdered resin was employed for ammonia recovery from municipal wastewater. • Powdered resin achievedefficient ammonia removal under various working conditions. • Co-existing cations indicated competitive adsorption of ammonia. • Ammonia was recoveredby two-stage crystallization coupled with ion exchange. Low-strength municipal wastewater is considered to be a recoverable nutrient resource with economic and environmental benefits. Thus, various technologies for nutrient removal and recovery have been developed. In this paper, powdered ion exchange resin was employed for ammonia removal and recovery from imitated low-strength municipal wastewater. The effects of various working conditions (powdered resin dosage, initial concentration, and pH value) were studied in batch experiments to investigate the feasibility of the approach and to achieve performance optimization. The maximum adsorption capacity determined by the Langmuir model was 44.39 mg/g, which is comparable to traditional ion exchange resin. Further, the effects of co-existing cations (Ca2+, Mg2+, K+) were studied. Based on the above experiments, recovery of ammonia as struvite was successfully achieved by a proposed two-stage crystallization process coupled with a powdered resin ion exchange process. Scanning electron microscopy (SEM) and X-ray diffractometry (XRD) results revealed that struvite crystals were successfully gained in alkaline conditions (pH= 10). This research demonstrates that a powdered resin and two-stage crystallization process provide an innovative and promising means for highly efficient and easy recovery from low-strength municipal wastewater.  相似文献   

13.
CNT-TiO2 composite is used to activate PMS under UV-light assistance. Superior performance is due to the enhanced electron-transfer ability of CNT. SO4, •OH and 1O2 play key roles in the degradation of organic pollutants. In this work, a UV-light assisted peroxymonosulfate (PMS) activation system was constructed with the composite catalyst of multi-walled carbon nanotubes (CNT) - titanium dioxide (TiO2). Under the UV light irradiation, the photoinduced electrons generated from TiO2 could be continuously transferred to CNT for the activation of PMS to improve the catalytic performance of organic pollutant degradation. Meanwhile, the separation of photoinduced electron-hole pairs could enhance the photocatalysis efficiency. The electron spin resonance spectroscopy (EPR) and quenching experiments confirmed the generation of sulfate radical (SO4), hydroxyl radical (•OH) and singlet oxygen (1O2) in the UV/PMS/20%CNT-TiO2 system. Almost 100% phenol degradation was observed within 20 min UV-light irradiation. The kinetic reaction rate constant of the UV/PMS/20%CNT-TiO2 system (0.18 min1) was 23.7 times higher than that of the PMS/Co3O4 system (0.0076 min1). This higher catalytic performance was ascribed to the introduction of photoinduced electrons, which could enhance the activation of PMS by the transfer of electrons in the UV/PMS/CNT-TiO2 system.  相似文献   

14.
Antibiotic-resistant bacteria and antibiotic resistance genes are in water bodies. UV/chlorination method is better to remove ARGs than UV or chlorination alone. Research on UV/hydrogen peroxide to eliminate ARGs is forthcoming. UV-based photocatalytic processes are effective to degrade ARGs. Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have been recognized as one of the biggest public health issues of the 21st century. Both ARB and ARGs have been determined in water after treatment with conventional disinfectants. Ultraviolet (UV) technology has been seen growth in application to disinfect the water. However, UV method alone is not adequate to degrade ARGs in water. Researchers are investigating the combination of UV with other oxidants (chlorine, hydrogen peroxide (H2O2), peroxymonosulfate (PMS), and photocatalysts) to harness the high reactivity of produced reactive species (Clž·, ClOž·ž, Clž2·ž, žž·OH, and SOž4ž·€) in such processes with constituents of cell (e.g., deoxyribonucleic acid (DNA) and its components) in order to increase the degradation efficiency of ARGs. This paper briefly reviews the current status of different UV-based treatments (UV/chlorination, UV/H2O2, UV/PMS, and UV-photocatalysis) to degrade ARGs and to control horizontal gene transfer (HGT) in water. The review also provides discussion on the mechanism of degradation of ARGs and application of q-PCR and gel electrophoresis to obtain insights of the fate of ARGs during UV-based treatment processes.  相似文献   

15.
Longer HRT can enhance degradation rate of sulfamethoxazole in granular reactor. Longer HRT can reduce accumulated concentrations of TCs and QNs in sludge. Longer HRT may have increased relative abundances of ARGs in aerobic granules. The behavior of antibiotics and the corresponding resistance genes in aerobic granular reactors for treating biogas slurry under different hydraulic retention times (10.7 h, R1; 8 h, R2) was investigated in this study. The results indicated that the hydraulic retention time could affect the effluent concentrations and removal efficiencies of sulfonamides. The average removal rates of tetracyclines, fluoroquinolones, and sulfonamides were 63%, 46%, and 90% in R1, and 62%, 46%, and 86% in R2, respectively. Although the removal efficiencies of tetracyclines and fluoroquinolones were similar in both reactors, the respective accumulated concentrations of tetracyclines and fluoroquinolones in R1 were 7.00 and 11.15 µg/g SS, which were lower than those in R2 (8.92 and 13.37 µg/g SS, respectively). The difference in the relative abundance of target antibiotic resistance genes between both reactors was not significant, yet the average relative abundances of all target resistance genes in R1 were higher than those in R2 after 45 days of operation. The results of this study suggested that a longer hydraulic retention time could enhance the antibiotic removal ability of aerobic granular sludge, yet it may also increase the risk of surplus sludge utilization from a resistance genes point of view.  相似文献   

16.
• Bi2O3 cannot directly activate PMS. • Bi2O3 loading increased the specific surface area and conductivity of CoOOH. • Larger specific surface area provided more active sites for PMS activation. • Faster electron transfer rate promoted the generation of reactive oxygen species. 1O2 was identified as dominant ROS in the CoOOH@Bi2O3/PMS system. Cobalt oxyhydroxide (CoOOH) has been turned out to be a high-efficiency catalyst for peroxymonosulfate (PMS) activation. In this study, CoOOH was loaded on bismuth oxide (Bi2O3) using a facile chemical precipitation process to improve its catalytic activity and stability. The result showed that the catalytic performance on the 2,4-dichlorophenol (2,4-DCP) degradation was significantly enhanced with only 11 wt% Bi2O3 loading. The degradation rate in the CoOOH@Bi2O3/PMS system (0.2011 min1) was nearly 6.0 times higher than that in the CoOOH/PMS system (0.0337 min1). Furthermore, CoOOH@Bi2O3 displayed better stability with less Co ions leaching (16.4% lower than CoOOH) in the PMS system. These phenomena were attributed to the Bi2O3 loading which significantly increased the conductivity and specific surface area of the CoOOH@Bi2O3 composite. Faster electron transfer facilitated the redox reaction of Co (III) / Co (II) and thus was more favorable for reactive oxygen species (ROS) generation. Meanwhile, larger specific surface area furnished more active sites for PMS activation. More importantly, there were both non-radical (1O2) and radicals (SO4•, O2•, and OH•) in the CoOOH@Bi2O3/PMS system and 1O2 was the dominant one. In general, this study provided a simple and practical strategy to enhance the catalytic activity and stability of cobalt oxyhydroxide in the PMS system.  相似文献   

17.
• Forward osmosis (FO) coupled with chemical softening for CCI ROC minimization • Effective removal of scale precursor ions by lime-soda ash softening • Enhanced water recovery from 54% to 86% by mitigation of FO membrane scaling • High-purity CaCO3 was recovered from the softening sludge • Membrane cleaning efficiency of 88.5% was obtained by EDTA for softened ROC Reverse osmosis (RO) is frequently used for water reclamation from treated wastewater or desalination plants. The RO concentrate (ROC) produced from the coal chemical industry (CCI) generally contains refractory organic pollutants and extremely high-concentration inorganic salts with a dissolved solids content of more than 20 g/L contributed by inorganic ions, such as Na+, Ca2+, Mg2+, Cl, and SO42. To address this issue, in this study, we focused on coupling forward osmosis (FO) with chemical softening (FO-CS) for the volume minimization of CCI ROC and the recovery of valuable resources in the form of CaCO3. In the case of the real raw CCI ROC, softening treatment by lime-soda ash was shown to effectively remove Ca2+/Ba2+ (>98.5%) and Mg2+/Sr2+/Si (>80%), as well as significantly mitigate membrane scaling during FO. The softened ROC and raw ROC corresponded to a maximum water recovery of 86% and 54%, respectively. During cyclic FO tests (4 × 10 h), a 27% decline in the water flux was observed for raw ROC, whereas only 4% was observed for softened ROC. The cleaning efficiency using EDTA was also found to be considerably higher for softened ROC (88.5%) than that for raw ROC (49.0%). In addition, CaCO3 (92.2% purity) was recovered from the softening sludge with an average yield of 5.6 kg/m3 treated ROC. This study provides a proof-of-concept demonstration of the FO-CS coupling process for ROC volume minimization and valuable resources recovery, which makes the treatment of CCI ROC more efficient and more economical.  相似文献   

18.
Less than 50 mg/L nitrobenzene brought little effect on anaerobic sulfate reduction. Kinetics of sulfate reduction under different nitrobenzene contents was studied. Increased nitrobenzene contents greatly changed the bacterial community structure. Genus Desulfovibrio played the key role in anaerobic sulfate reduction process. Nitrobenzene (NB) is frequently found in wastewaters containing sulfate and may affect biological sulfate reduction process, but information is limited on the responses of sulfate reduction efficiency and microbial community to the increased NB contents. In this study, a laboratory-scale expanded granular sludge bed reactor was operated continuously to treat high-sulfate organic wastewater with increased NB contents. Results successfully demonstrated that the presence of more than 50 mg/L NB depressed sulfate reduction and such inhibition was partly reversible. Bath experiments showed that the maximum specific desulfuration activity (SDA) decreased from 135.80 mg SO42?/gVSS/d to 30.78 mg SO42?/gVSS/d when the NB contents increased from none to 400 mg/L. High-throughput sequencing showed that NB also greatly affected bacterial community structure. Bacteroidetes dominated in the bioreactor. The abundance of Proteobacteria increased with NB addition while Firmicutes presented an opposite trend. Proteobacteria gradually replaced Firmicutes for the dominance in response to the increase of influent NB concentrations. The genus Desulfovibrio was the dominant sulfate-reducing bacteria (SRB) with absence or presence of NB, but was inhibited under high content of NB. The results provided better understanding for the biological sulfate reduction under NB stress.  相似文献   

19.
• Unmodified-AuNP based, colorimetric nanosensor was constructed for Pb2+ detection. • 5-nucleotide truncation in DNAzyme made complete substrate detachment upon Pb2+. • Ultrasensitive and selective detection of Lead (II) was achieved with 0.2×10-9 mol/L LOD. Water pollution accidents, such as the Flint water crisis in the United States, caused by lead contamination have raised concern on the safety of drinking water distribution systems. Thus, the routine monitoring of lead in water is highly required and demands efficient, sensitive, cost-effective, and reliable lead detection methods. This study reports a label-free colorimetric nanosensor that uses unmodified gold nanoparticles (AuNPs) as indicators to enable rapid and ultra-sensitive detection of lead in environmental water. The 8–17 DNAzyme was truncated in this study to facilitate the detachment of single-stranded DNA fragments after substrate cleavage in the presence of Pb2+. The detached fragments were adsorbed over AuNPs and protected against salt concentration-induced aggregation. Accordingly, high Pb2+ would result in rapid color change from blue to pink. The established sensing principle achieved a sensitive limit of detection of 0.2×10-9 mol/L Pb2+, with a linear working range of two orders of magnitude from 0.5×10-9 mol/L to 5×10-9 mol/L. The selectivity of the nanosensor was demonstrated by evaluating the interfering metal ions. The developed nanosensor can serve as a substitute for the rapid analysis and monitoring of trace lead levels under the drinking water distribution system and even other environmental water samples.  相似文献   

20.
• Nano zero-valent manganese (nZVMn, Mn0) is synthesized via borohydrides reduction. • Mn0 combined with persulfate/hypochlorite is effective for Tl removal at pH 6-12. • Mn0 can activate persulfate to form hydroxyl and sulfate radicals. • Oxidation-induced precipitation and surface complexation contribute to Tl removal. • Combined Mn0-oxidants process is promising in the environmental field. Nano zero-valent manganese (nZVMn, Mn0) was prepared through a borohydride reduction method and coupled with different oxidants (persulfate (S2O82), hypochlorite (ClO), or hydrogen peroxide (H2O2)) to remove thallium (Tl) from wastewater. The surface of Mn0 was readily oxidized to form a core-shell composite (MnOx@Mn0), which consists of Mn0 as the inner core and MnOx (MnO, Mn2O3, and Mn3O4) as the outer layer. When Mn0 was added alone, effective Tl(I) removal was achieved at high pH levels (>12). The Mn0-H2O2 system was only effective in Tl(I) removal at high pH (>12), while the Mn0-S2O82 or Mn0-ClO system had excellent Tl(I) removal (>96%) over a broad pH range (4–12). The Mn0-S2O82 oxidation system provided the best resistance to interference from an external organic matrix. The isotherm of Tl(I) removal through the Mn0-S2O82 system followed the Freundlich model. The Mn0 nanomaterials can activate persulfate to produce sulfate radicals and hydroxyl radicals. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy suggested that oxidation-induced precipitation, surface adsorption, and electrostatic attraction are the main mechanisms for Tl(I) removal resulting from the combination of Mn0 and oxidants. Mn0 coupled with S2O82/ClO is a novel and effective technique for Tl(I) removal, and its application in other fields is worthy of further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号