首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用植物提取液绿色合成的纳米铁,具有绿色环保、成本低廉等优点。本文采用葡萄籽提取液作为还原剂和稳定剂,风车草生物炭为载体,制备了生物炭负载纳米铁(CBC-nZVI),用于去除废水中的As(Ⅲ)。结果表明,纳米铁(nZVI)成功负载于生物炭表面,具有较大的比表面积和孔体积;随着反应时间的延长,溶液温度的升高,CBC-nZVI投加量的增加和溶液初始pH的增大,CBC-nZVI对As(Ⅲ)的吸附量不断增大;Langmuir等温吸附模型能更准确地描述CBC-nZVI对As(Ⅲ)吸附行为,CBC-nZVI对As(Ⅲ)去除过程符合准二级动力学模型,表明CBC-nZVI对As(Ⅲ)的吸附是单层吸附,以化学吸附为主。ESR表征结果表明CBC-nZVI在有氧反应体系中生成了·OH,反应过程中,As(Ⅲ)大部分被氧化为毒性较低的As(Ⅴ),通过吸附、氧化还原和共沉淀实现As(Ⅲ)的最终去除。  相似文献   

2.
采用共沉淀法制备了甲硫氨酸改性镁铁水滑石(Met/LDHs)的吸附材料。利用X射线衍射分析(XRD)、傅里叶红外光谱分析(FTIR)和X射线光电子能谱(XPS)对Met/LDHs的形貌和结构进行了表征和基本特性分析,采用静态批处理法考察了Met/LDHs对Sb(Ⅴ)和As(Ⅴ)的吸附性能。经甲硫氨酸改性后的水滑石材料中羧酸根和甲巯基等功能基团增加,对Sb(Ⅴ)和As(Ⅴ)的最大吸附量分别可达66.23 mg·g-1和67.20 mg·g-1,均高于未改性的水滑石。在Sb(Ⅴ)和As(Ⅴ)共存的二元体系中,Met/LDHs会优先吸附As(Ⅴ),这可能与As(Ⅴ)的离子半径更小有关。第1次解吸实验后少量的Sb(Ⅴ)和As(Ⅴ)以牢固的化学吸附占据部分吸附位点,导致后续循环使用中其去除率略有降低。Met/LDHs对Sb(Ⅴ)和As(Ⅴ)去除主要依靠层间阴离子交换、氢键作用以及内球表面络合反应等机制共同作用。  相似文献   

3.
针对水中三价砷As(Ⅲ)毒害大、难去除的问题,本研究采用FeSO4/K2FeO4组合处理方式以恒温浸润法对活性炭进行改性,制备获得原位铁氧化物载铁活性炭(AFPAC),利用负载的铁氧化物的吸附性能,耦合活性炭的吸附和有效的固液分离功能,实现了As(Ⅲ)的高效去除.结果表明,当AFPAC投加量1g·L-1时,对初始质量浓...  相似文献   

4.
以活性铝氧化物AlOxHy处理某高氟地下水的中试实验获得的吸附剂废料AlOxHy-Fn为对象,考察其对三价砷(As(Ⅲ))和五价砷(As(Ⅴ))吸附去除性能,并对吸附机理进行了探讨。研究显示,AlOxHy-Fn为多孔无定型且具有不规则表面的絮状结构,比表面积为218.88 m2/g,零电荷点pHZPC在pH为8左右;AlOxHy-Fn可快速吸附As(Ⅲ)和As(Ⅴ),且反应24 h后的平衡吸附量分别为0.60和3.41 mg/g,朗格缪尔模型可以很好地描述As(Ⅲ)和As(Ⅴ)在AlOxHy-Fn表面的吸附,且As(Ⅲ)和As(Ⅴ)的最大吸附容量分别为13.63和63.27 mg/g;AlOxHy-Fn在pH=4~10范围内对As(Ⅴ)去除率在90%以上,As(Ⅲ)在中性和弱碱性pH范围内吸附效果较好,但去除率仍在32%以下。AlOxHy-Fn表面性质、砷形态分布特征等对As(Ⅲ)与As(Ⅴ)的吸附有重要影响,电负性As(Ⅴ)较电中性As(Ⅲ)更容易吸附在AlOxHy-Fn表面。AlOxHy-Fn吸附除砷过程中,在pH为6时氟溶出量最低(0.40 mg/g),过高或过低pH均会导致氟溶出量增大;氟溶出量与As(Ⅴ)吸附量之间有明显正相关关系(R2=0.97),但与As(Ⅲ)吸附量无相关关系;铝溶出量在pH为4~10范围内均很低。将AlOxHy-Fn回用作为除砷吸附剂去除工业含砷废水的砷具有良好的技术经济可行性,且将As(Ⅲ)氧化为As(Ⅴ)是提高去除效果的重要手段。  相似文献   

5.
制备了大孔和DH302 2种MnO2的负载树脂.并用SEM、EDS手段表征了负载树脂,实验了负载MnO2后树脂对As(Ⅴ)的去除效果.结果表明:负载树脂对As(Ⅴ)的去除效果比原树脂有很大提高;吸附As(Ⅴ)后的2种负载树脂,均能较好地解吸并可重新用于对As(Ⅴ)的吸附实验.  相似文献   

6.
研究了三价铁改性对不同活性炭(颗粒和粉末)对水中砷的吸附特性的影响。结果表明,三价铁改性有效提高了活性炭对不同形态砷的吸附性能。其中,对于2种活性炭,As(Ⅲ)和As(Ⅴ)的最佳铁离子改性浓度分别为0.1和0.05 mol/L。此时,通过Langmuir等温线方程拟合得到:粉末和颗粒活性炭对As(Ⅲ)的最大吸附量qm分别为2.38 mg/g和9.39 mg/g;而对As(Ⅴ)的qm分别为5.12 mg/g和2.32 mg/g。此外,当溶液的p H从3升高到9的过程中,吸附量先增加后有所下降,当p H为7时,改性前后的活性炭对砷的吸附量达到最高。  相似文献   

7.
研究了初始pH对δ-MnO_2和水铁矿吸附As(Ⅴ)的动力学和热力学过程的影响。结果表明,不同初始pH对水铁矿去除As(Ⅴ)的效果影响不明显,而对δ-MnO_2去除As(Ⅴ)的效果影响较大。在相同的吸附时间下,初始pH=5.0时,As(Ⅴ)去除率最高,且随初始pH增大而降低。当初始pH=5.0时,δ-MnO_2和水铁矿对As(Ⅴ)的平衡吸附量总体上都大于初始pH=7.0或初始pH=9.0时。准二级动力学方程可以很好地描述δ-MnO_2和水铁矿吸附As(Ⅴ)的动力学过程。Freundlich方程拟合水铁矿和δ-MnO_2吸附As(Ⅴ)的过程优于Langmuir方程。  相似文献   

8.
用氯化十六烷基三甲铵(Cetyltrimethylammonium chloride,CTAC)修饰铁氧化物Fe_2O_3,得到氨基复合的铁氧化物纳米材料(Fe_2O_3@CTAC)并研究了其对As(Ⅴ)的吸附去除性能及机理。CTAC修饰不会改变Fe_2O_3的物理化学结构,而形成的Fe_2O_3@CTAC不仅可以通过铁氧化物表面络合作用吸附As(Ⅴ),复合材料表面的氨基也可以通过静电作用吸附As(Ⅴ)。因而复合材料对As(Ⅴ)的吸附去除效果显著提升,饱和吸附容量可以达到23.13 mg·g~(-1)。Fe_2O_3@CTAC吸附As(Ⅴ)可以在2 min内达到平衡,符合拟二级动力学模型和two-site Langmuir模型。在pH为3~9的范围内,Fe_2O_3@CTAC均能有效吸附去除As(Ⅴ),去除率均能达到90%以上。天然有机质和硫酸根、碳酸氢根、硅酸根对As(Ⅴ)在Fe_2O_3@CTAC上的吸附没有明显的抑制作用。磷酸根由于与As(Ⅴ)存在竞争吸附作用而抑制As(Ⅴ)的吸附,然而在通常水体磷酸根浓度条件下,Fe_2O_3@CTAC对As(Ⅴ)的去除率依然达到90%以上。此外,Fe_2O_3@CTAC可以再生并重复利用,经过5次循环利用后As(Ⅴ)的去除率能够保持在85%以上。  相似文献   

9.
采用共沉淀和焙烧法制备蔗渣炭/镁铝双金属氧化物(LDO),研究了pH、吸附时间、初始As(Ⅴ)浓度等因素对其吸附As(Ⅴ)的性能的影响。采用X射线衍射(XRD)、傅立叶红外光谱(FTIR)和扫描电镜(SEM)对蔗渣炭/镁铝双金属氢氧化物(LDH)、吸附As(Ⅴ)前后的蔗渣炭/镁铝LDO进行表征,探讨其吸附As(Ⅴ)的机理。结果表明,蔗渣炭/镁铝LDH具有水滑石层状结构;在pH为3.0~10.0时,蔗渣炭/镁铝LDO对As(Ⅴ)的平衡吸附量较高。准二级动力学模型可用于描述其对As(Ⅴ)的吸附动力学过程,吸附等温线符合Langmuir方程,45℃时,其对As(Ⅴ)的饱和吸附量为26.120mg/g。蔗渣炭/镁铝LDO受共存阴离子影响表现为HPO_4~(2-)CO_3~(2-)SO_4~(2-)Cl~-NO_3~-;材料再生循环利用4次后,对20.0mg/L的As(Ⅴ)的去除率为89.63%。XRD和FTIR分析表明,吸附后AsO_4~(3-)嵌入水滑石层间。  相似文献   

10.
采用无机羟基铝及阳离子表面活性剂十六烷基三甲基溴化铵对天然蒙脱石进行无机及复合改性.在吸附过程中研究了反应时间、投加量和pH等变量对吸附性能的影响,同时进行吸附动力学及吸附等温线研究,吸附规律符合Langmuir等温方程式.采用X射线衍射、X射线荧光、傅里叶红外光谱等表征手段对未改性及改性蒙脱石进行性能表征.研究结果表明,羟基铝及复合改性蒙脱石对As(Ⅴ)具有良好的吸附性能,在pH为4~10,初始砷浓度为2 mg/L,改性蒙脱石对As(Ⅴ)的去除率接近99%.吸附机理主要为羟基铝表面络合吸附和静电吸附.  相似文献   

11.
任燕  郭华明 《环境工程学报》2012,6(9):3011-3018
砷作为饮用水中三致作用的污染物,导致越来越严重的环境问题。人造菱铁矿对水中的砷去除效率高。为了达到工业化应用的程度,人造菱铁矿的造粒研究非常关键。研究了人造菱铁矿造粒的条件及其去除As(Ⅴ)的特征。人造菱铁矿造粒的最佳条件是70℃条件下加热干燥90 min。造粒后的菱铁矿吸附As(Ⅴ)的平衡时间为24 h。准一级和准二级动力学都可以较好地模拟As(Ⅴ)的吸附随时间的变化。在15、25、35和45℃时,与Langmuir吸附等温方程相比,Fre-undlich吸附等温方程可以更好地模拟As(Ⅴ)的吸附等温。pH<3时,As(Ⅴ)的吸附明显降低。共存阴离子HCO3-、SO24-、NO3-或Cl-对材料去除As(Ⅴ)的影响不明显,而SiO23-、PO34-会降低As(Ⅴ)的去除效率。通过XRD和SEM电镜扫描分析,初步得出人造菱铁矿颗粒除As(Ⅴ)可能是化学吸附与共沉淀同时存在的去除过程。  相似文献   

12.
以氧化石墨烯和正硅酸乙酯为原料,采用溶胶-凝胶法制得石墨烯/二氧化硅复合材料(GS),以GS为基体,采用液相还原法,得到石墨烯/二氧化硅负载纳米零价铁(NZVI/GS),将其用于水中As(Ⅲ)的吸附研究。通过XRD、TEM、BET、Zeta电位等表征手段对NZVI/GS进行表征。探讨不同反应条件对NZVI/GS的吸附影响,并进行动力学方程和吸附等温线方程拟合。结果表明,NZVI/GS对As(Ⅲ)具有良好的去除效果,当初始溶液pH为6~8,投加量为0.4 g·L~(-1),反应温度为35℃,砷初始浓度为2 mg·L~(-1)时,NZVI/GS对As(Ⅲ)的去除率高达99.81%。通过Langmuir等温吸附方程得到NZVI/GS对As(Ⅲ)最大吸附量55.93 mg·g~(-1)。  相似文献   

13.
Zr-Fe双组分复合除砷吸附剂的优化制备及性能评价   总被引:1,自引:0,他引:1  
实验发现,铁氧化物或铁的羟基氧化物对As(V)有较好的吸附性能,而锆氧化物或锆水合氧化物则对As(Ⅲ)有优异的吸附选择性,但其使用的pH通常要在9的条件下。通过简单的共沉淀法制备了Zr-Fe双组分复合吸附剂,在制备过程中通过优化制备条件如:沉淀剂浓度、金属离子总浓度、金属离子配比、反应温度、反应时间及吸附剂价格等因素,最终合成出了对As(V)和As(Ⅲ)都具有良好吸附能力的吸附剂。这种吸附剂在中性条件下对As(V)和As(Ⅲ)的最大吸附量为62 mg/g和118 mg/g。  相似文献   

14.
采用水合肼法对天然含铁锰矿进行改性,并用岭脊分析法优化改性工艺,从而提高天然含铁锰矿的砷吸附去除性能。结果表明,水合肼投加量和高锰酸钾投加量对改性天然含铁锰矿的砷吸附性能有显著影响,岭脊分析得到的天然含铁锰矿最优改性条件为水合肼投加量1.5 mmol/g、H2SO4 3 mol/L、高锰酸钾1.1 mmol/g,此条件下获取的改性天然含铁锰矿对As(Ⅲ)、As(Ⅴ)去除率分别可达97.42%±0.06%、97.47%±0.48%,对As(Ⅲ)和As(Ⅴ)饱和吸附容量分别为15.29、8.01 mg/g,均明显优于天然含铁锰矿。改性过程在溶解天然含铁锰矿中杂质的同时,也使得天然含铁锰矿表面活化,不仅提高了As(Ⅲ)氧化能力,也增大了As(Ⅴ)吸附作用。  相似文献   

15.
用化学混合法将采用Hummer方法制备的氧化石墨烯加载到了二氧化钛/壳聚糖基复合微粒中,并用于水中As(Ⅲ)的去除。通过扫描电镜、Zeta电位仪和BET比表面积分析仪对微粒进行了表征。结果表明,经改性后的二氧化钛/壳聚糖/氧化石墨烯复合微粒在紫外光照下最大吸附容量可达12.43 mg·g-1,而二氧化钛/壳聚糖微粒的最大吸附量仅为4.97 mg·g-1。吸附动力学符合拟二级动力学模型,吸附等温线可用Langmuir模型描述。随p H值的增加,吸附剂对As(Ⅲ)的吸附量逐渐减小。该新型复合微粒吸附剂制备方式、合成条件简单,具有吸附容量较高和易于固液分离再生的优点,因此对水中除As(Ⅲ)有较好的应用前景。  相似文献   

16.
利用本实验所制备的海藻酸钠微胶囊负载纳米零价铁材料(M-NZVI)对水中不同浓度的As(V)进行了吸附去除研究,并比较了不同材料的吸附等温曲线。实验结果表明,2 g/L M-NZVI在pH=6.5±0.1,常温常压条件下对5 mg/L的As(V)的吸附去除率为90.35%,吸附速率较快,在30 min即可达到吸附平衡。通过M-NZVI、Ca-ALG和NZVI的热力学对比实验可知,M-NZVI表现出优越的吸附性能。溶液吸附剂添加量、初始pH值、离子浓度等因素对M-NZVI吸附水中砷离子的效率有一定影响:在其他条件不变的情况下,As(V)的去除率随着添加量的增加而逐渐增大;M-NZVI对As(V)的最佳吸附效果在pH=6~7范围之间;溶液中高浓度Na Cl能对M-NZVI的吸附性产生较强的干扰。同时,对于As(V)≤5mg/L的溶液,M-NZVI可以不做任何处理多次利用3~4次。这些结果显示,M-NZVI是一种用于原位修复重金属污染水体的潜在理想材料。  相似文献   

17.
砷污染地下水和废水严重影响人体健康和生态环境,开发新型砷污染水体的修复材料具有重要意义。含铁锰矿来源广,具有较高的砷吸附容量和氧化特性,常用于吸附去除水体砷污染。但是,天然铁锰矿成分复杂,杂质含量多,对砷的吸附容量小,通常需要改性以提高其除砷性能。以不同铁锰含量比例的天然锰矿为材料,研究了水合肼改性法提高天然铁锰矿砷吸附容量的效果,采用批处理法研究了影响改性铁锰矿吸附砷的过程和影响因子,并结合XPS和FTIR等光谱学手段探究改性天然铁锰矿对As(Ⅲ)的去除机制。结果表明,两种不同铁锰比例的改性天然铁锰矿对砷的吸附容量分别为30.9 mg·g-1和12 mg·g-1,远高于未改性的材料。改性后的材料对As(Ⅲ)的吸附过程符合二级动力学模型,等温吸附曲线符合Freundlich模型。影响因子结果表明,共存离子PO43-、SiO32-、CO32-对不同铁锰比改性材料去除As(Ⅲ)均有抑制作用。4种材料的pHpzc均小于...  相似文献   

18.
采用羧甲基纤维素钠(CMC)为包覆材料,通过原位修饰技术改性纳米铁(NI),制得羧甲基纤维素包覆型纳米铁复合材料(CMC/NI)。利用场发射扫描电镜、傅立叶红外光谱仪和X射线衍射仪对CMC/NI复合材料进行表征;以水溶液中As(Ⅲ)的有效去除率为目标,探索了制备条件(铁源种类、包覆质量比CMC/(CMC+Fe)和制备温度等)和反应条件(砷溶液初始p H值、反应温度和复合材料投加量等)对复合材料净化水中As(Ⅲ)的影响。结果表明,改性后的CMC/NI复合材料分散性和抗氧化性得到提高,具有良好的As(Ⅲ)净化能力。以Fe SO4为铁源,包覆比为37%,20℃条件下制备的复合材料,以1.5 g/L加入到温度为30℃,p H为7,初始浓度为2 mg/L的砷溶液中,反应24 h,其As(Ⅲ)去除率可达98%。  相似文献   

19.
叶智新  任刚 《环境工程学报》2019,13(12):2798-2807
为探讨改性碳纳米管(CNTs)对砷的吸附特性,采用化学修饰对CNTs进行了改性。将CNTs先后进行氧化和酰胺化处理,并与聚苯胺反应,得到酰胺化/氧化碳纳米管-聚苯胺(NMCNTs-PANI),利用SEM观察、比表面积测定、含氧含氮官能团和分子结构分析对改性前后CNTs进行了表征;研究了NMCNTs-PANI在不同反应体系对As(Ⅲ)的吸附效果。结果表明:NMCNTs-PANI总孔容和平均孔径均有所增加;表面含氧含氮基团增加;初始pH对吸附量影响较显著;共存阴离子对吸附量影响可忽略不计;吸附过程符合准一级动力学和准二级动力学方程,证实该过程主要以化学吸附为主;吸附等温线符合Langmuir模型。NMCNTs-PANI通过表面吸附-化学诱导作用可较好地去除水中As(Ⅲ),是一种优良的含砷污染水的吸附剂。  相似文献   

20.
椰纤维生物炭对Cd(Ⅱ)、As(Ⅲ)、Cr(Ⅲ)和Cr(Ⅵ)的吸附   总被引:2,自引:0,他引:2  
为了研究不同裂解温度制备的椰衣生物炭对Cd(Ⅱ)、As(Ⅲ)、Cr(Ⅲ)和Cr(Ⅵ)的吸附性能差异及其机理,并为制备高效吸附生物炭提供依据,采用Langmuir和Freundlich模型拟合分析了300、500和700℃3个裂解温度下制备的椰衣生物炭对Cd(Ⅱ)、As(Ⅲ)、Cr(Ⅲ)和Cr(Ⅵ)的等温吸附曲线,使用元素分析仪、Boehm滴定法、扫描电子显微镜等研究了不同温度制备的生物炭的组成与理化性质。结果表明,Langmuir模型和Freundlich模型都能较好地拟合生物炭对这些重金属的吸附,提高生物炭的制备温度可增加其对Cd(Ⅱ)和Cr(Ⅲ)的最大吸附量,同时降低其对As(Ⅲ)和Cr(Ⅵ)的最大吸附量;制炭温度升高引起的生物炭C含量、灰分含量、p H、CEC的升高和生物炭表面积增大是导致其对Cd(Ⅱ)和Cr(Ⅲ)的最大吸附量增大的主要原因。而随着制炭温度的上升,O、H元素含量下降引起的碱性官能团的增加,和羟基和酚羟基官能团的减少是生物炭对As(Ⅲ)和Cr(Ⅵ)吸附量下降的主要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号