首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes an investigation into the behaviour of smoke plumes from pool fires, and the subsequent generation of empirical models to predict plume rise and dispersion from such a combustion source. Synchronous video records of plumes were taken from a series of small-scale (0.06–0.25m2) outdoor methanol/toluene pool fire experiments, and used to produce sets of images from which plume dimensions could be derived. Three models were used as a basis for the multiple regression analysis of the data set, in order to produce new equations for improved prediction. Actual plume observations from a large (20.7 m×14.2 m) aviation fuel pool fire were also used to test the predictions. The two theoretically based models were found to give a better representation of plume rise and dispersion than the empirical model based on measurements of small-scale fires. It is concluded that theoretical models tested on small-scale fires (heat output ≈70 kW) can be used to predict plume behaviour from much larger combustion sources (heat output ≈70 MW) under near neutral atmospheric conditions.  相似文献   

2.
ABSTRACT

The rate of formation of secondary particulate matter (PM) in power plant plumes varies as the plume material mixes with the background air. Consequently, the rate of oxidation of sulfur dioxide (SO2) and nitrogen dioxide (NO2) to sulfate and nitric acid, respectively, can be very different in plumes and in the background air (i.e., air outside the plume). In addition, the formation of sulfate and nitric acid in a power plant plume is a strong function of the chemical composition of the background air and the prevailing meteorological conditions.

We describe the use of a reactive plume model, the Reactive and Optics Model of Emissions, to simulate sulfate and nitrate formation in a power plant plume for a variety of background conditions. We show that SO2 and NO2 oxidation rates are maximum in the background air for volatile organic compound (VOC)-limited airsheds but are maximum at some downwind distance in the plume when the background air is nitrogen oxide (NOx)-limited. Our analysis also shows that it is essential to obtain measurements of background concentrations of ozone, aldehydes, peroxyacetyl nitrate, and other VOCs to properly describe plume chemistry.  相似文献   

3.
Numerous integral models describing the behaviour of buoyant plumes released into stratified crossflows have been presented in the literature. One of the differences between these models is the form assumed for the self-similar profile: some models assume a top-hat form while others assume a Gaussian. The differences between these two approaches are evaluated by
  • 1.(a) comparing the governing equations on which Gaussian and top-hat models are based;
  • 2.(b) comparing some typical plume predictions generated by each type of model over a range of model parameters.
It is shown that, while the profile assumption does lead to differences in the equations which govern plume variables, the effects of these differences on actual plume predictions is small over the range of parameters of practical interest. Since the predictions of Gaussian and top-hat models are essentially equivalent, it can thus be concluded that the additional physical information incorporated into a Gaussian formulation plays only a minor role in mean plume behaviour, and that the tophat approach, which requires the numerical solution of a simpler set of equations, is adequate for most situations where an integral approach would be used.  相似文献   

4.
5.
In this paper, an experimental study of the rise and development of a single buoyant plume and a pair of in-line buoyant plumes is presented. The investigations were carried out at small scale in a water filled towing tank using both quantitative flow visualisation and local concentration measurements. The measured plume trajectories for a single plume were compared with the Briggs plume rise equation and predictions from a numerical integral model. Plume trajectories were studied for twin in-line plumes, with particular attention to changes in the plume trajectory, especially any additional rise that resulted from the interaction between the two plumes. Concentration field distributions in cross-sections through both single and interacting twin plumes were obtained from the local concentration measurement system. These showed how the interaction affected the plume structure, notably the double vortex system that occurs in a fully developed plume.  相似文献   

6.
Results are presented of airborne measurements taken in oil sands extraction plant plumes in Fort McMurray, Alberta, Canada. Measurements with fast response monitors at a high sampling rate illustrate the narrow reaction zone in the plume caused by a turbulent diffusion reaction of NO to NO2 as suggested by theoretical and laboratory studies. The measured conversion rates of NO to NO2 varied considerably from day to day, from 0.2 to 21.4% min. Analysis of the oxidation rate of NO to NO2 and of the atmospheric turbulence parameter reveals that, over the distances and time scales within which the plumes are distinguishable from the background, the nitrogen oxides chemistry in the plumes is controlled by the rates at which the plumes mix with the ambient air (containing ozone), rather than by chemical kinetics.  相似文献   

7.
Transport and dispersion of pollutants in the lower atmosphere are predicted by using both a Lagrangian particle model (LPM) and an adaptive puff model (APM2) coupled to the same mesoscale meteorological prediction model PMETEO. LPM and APM2 apply the same numerical solutions for plume rise; but, for advection and plume growth, LPM uses a stochastic surrogate to the pollutant conservation equation, and APM2 applies interpolated winds and standard deviations from the meteorological model, using a step-wise Gaussian approach. The results of both models in forecasting the SO2 ground level concentration (glc) around the 1400 MWe coal-fired As Pontes Power Plant are compared under unstable conditions. In addition, meteorological and SO2 glc numerical results are compared to field measurements provided by 17 fully automated SO2 glc remote stations, nine meteorological towers and one Remtech PA-3 SODAR, from a meteorological and air quality monitoring network located 30 km around the power plant.  相似文献   

8.
Correct prediction of the initial rise of a plume due to momentum and buoyancy effects is an important factor in dispersion modelling. A new plume rise scheme, based upon conservation equations of mass, momentum and heat, for the Lagrangian model, NAME, is described. The conservation equations are consistent with the well-known analytical plume rise formulae for both momentum- and buoyancy-dominated plumes. The performance of the new scheme is assessed against data from the Kincaid field experiment. Results show that the new scheme adds value to the model and significantly outperforms the previous plume rise scheme. Using data from assessments of atmospheric dispersion models using the Kincaid data set, it is shown that NAME is comparable to other models over short ranges.  相似文献   

9.
ABSTRACT

The Segmented-Plume Primary Aerosol Model (SPPAM) has been developed over the past several years. The earlier model development goals were simply to generalize the widely used Industrial Source Complex Short-Term (ISCST) model to simulate plume transport and dispersion under light wind conditions and to handle a large number of roadway or line sources. The goals have been expanded to include development of improved algorithm for effective plume transport velocity, more accurate and efficient line and area source dispersion algorithms, and recently, a more realistic and computationally efficient algorithm for plume depletion due to particle dry deposition. A performance evaluation of the SPPAM has been carried out using the 1983 PNL dual tracer experimental data. The results show the model predictions to be in good agreement with observations in both plume advection-dispersion and particulate matter (PM) depletion by dry deposition. For PM2.5 impact analysis, the SPPAM has been applied to the Rubidoux area of California. Emission sources included in the modeling analysis are: paved road dust, diesel vehicular exhaust, gasoline vehicular exhaust, and tire wear particles from a large number of roadways in Rubidoux and surrounding areas. For the selected modeling periods, the predicted primary PM2.5 to primary PM10 concentration ratios for the Rubidoux sampling station are in the range of 0.39–0.46. The organic fractions of the primary PM2.5 impacts are estimated to be at least 34–41%. Detailed modeling results indicate that the relatively high organic fractions are primarily due to the proximity of heavily traveled roadways north of the sampling station. The predictions are influenced by a number of factors; principal among them are the receptor locations relative to major roadways, the volume and composition of traffic on these roadways, and the prevailing meteorological conditions.  相似文献   

10.
Dimensional arguments are used to predict plume rise for buoyant plumes in both stable and neutral air, for both calm and windy conditions. Dominant terms are assumed to be windpseed ū, “buoyancy flux” F (proportional to heat efflux), and a stability parameter s (proportional to potential temperature gradient). Observations presented support the dimensional analysis predictions, except that for final rise in a neutral atmosphere they are adeauate only for a conservative estimate of rise. The method is extended to predict maximum ground concentration of effluent gases in the worst situations {windy neutral and fumigation) for open country, valleys, and “canyons.” These predictions are compared ivith limited observations.  相似文献   

11.
The purpose of this paper is to describe ozone production in forest slash burn plumes. Plumes from controlled fires in the state of Washington were monitored using an instrumented aircraft. Ozone, oxides of nitrogen, condensation nuclei, and visual range (nephelometer) were measured continuously on board the plane. Airborne grab samples were collected for detailed hydrocarbon analysis.

The slash burn plumes were found to contain significant quantities of ozone. A buildup of 40–50 ppb above the ambient background ozone concentrations was not unusual. Hydrocarbon analyses revealed the presence of many photochemically reactive olefins in the plume. Hydrocarbon/NO x ratios were favorable for photochemical oxidant production.  相似文献   

12.
A method for calculating the dispersion of plumes in the atmospheric boundary layer is presented. The method is easy to use on a routine basis. The inputs to the method are fundamental meteorological parameters, which act as distinct scaling parameters for the turbulence. The atmospheric boundary layer is divided into a number of regimes. For each scaling regime we suggest models for the dispersion in the vertical direction. The models directly give the crosswind-integrated concentrations at the ground, xy, for nonbuoyant releases from a continuous point source. Generally the vertical concentration profile is proposed to be other than Gaussian. The lateral concentration profile is always assumed to be Gaussian, and models for determining the lateral spread σy are proposed. The method is limited to horizontally homogeneous conditions and travel distances less than 10km. The method is evaluated against independent tracer experiments over land. The overall agreement between measurements and predictions is very good and better than that found with the traditional Gaussian plume model.  相似文献   

13.
The purpose of this study was to evaluate alternative prediction models for the SO2 concentrations produced in the vicinity of the Ohio Edison Company Sammis Power Plant. The plant is situated in the northeastern portion of the Ohio River Valley in complex terrain. Comparisons of the 16 highest predicted and measured short-term SO2 concentrations were conducted for a one year period for 58 alternative models. Several models were found to predict reasonably accurately the 16 highest measured 24-hour SO2 concentrations. Each of these models requires an upward adjustment in the plume centerline location as the plume is transported downwind in rising terrain. These same models overpredict by substantial margins the 16 highest measured 3-hour SO2 concentrations. Improvements in emissions inventory data and improvements in the prediction models used are believed necessary to increase prediction accuracy further.  相似文献   

14.
The evolution of photochemical smog in a plant plume was investigated with the aid of an instrumented helicopter. Air samples were taken in the plume of the Cumberland Power Plant, located in central Tennessee, during the afternoon of 16 July 1995 as part of the Southern Oxidants Study – Nashville Middle Tennessee Ozone Study. Twelve cross-wind air sampling traverses were made at six distance groups from 35 to 116 km from the source. During the sampling period the winds were from the west–northwest and the plume drifted towards the city of Nashville TN. Ten of the traverses were made upwind of the city, where the power plant plume was isolated, and two traverses downwind of the city when the plumes were possibly mixed. The results revealed that even six hours after the release, excess ozone production was limited to the edges of the plume. Only when the plume was sufficiently dispersed, but still upwind of Nashville, was excess ozone (up to 109 ppbv, 50–60 ppbv above background levels) produced in the center of the plume. The concentrations image of the plume and a Lagrangian particle model suggests that portions of the power plant plume mixed with the urban plume. The mixed urban power plant plume began to regenerate O3 that peaked at 120 ppbv at a short distance (15–25 km) downwind of Nashville. Ozone productivity (the ratio of excess O3 to NOy and NOz) in the isolated plume was significantly lower compared with that found in the city plume. The production of nitrate, a chain termination product, was significantly higher in the power plant plume compared to the mixed plume, indicating shorter chain length of the photochemical smog chain reaction mechanism.  相似文献   

15.
The compact design of mechanical cooling towers necessitates that the plumes are issued into the cross-wind in close proximity. An improved understanding of the interaction of adjacent plumes is therefore required for better design of such cooling towers, which may lead to a reduction in their environmental impact. This paper presents the results of a numerical investigation into the interaction of two adjacent plumes in a cross-flow. The numerical model simulates small-scale wind tunnel experiments of a cooling tower arrangement. The computations are performed for three-dimensional, turbulent, buoyant and interacting plumes, and for a single plume for comparison. Two double-source arrangements, namely, tandem and side-by-side, with respect to the oncoming atmospheric boundary layer are considered. A low Reynolds number kε turbulence model is used with two discretisation schemes, hybrid and QUICK, and the results are compared. Comparisons are also made with the experimental results. The results show that the interaction of side-by-side plumes is dominated by the interaction of the rotating vortex pairs within the plumes. A tandem source arrangement leads to early merging and efficient rise enhancement. Comparisons of the predicted results with experimental data show good agreement for the plume rise.  相似文献   

16.
Accurately predicting the rise of a buoyant exhaust plume is difficult when there are large vertical variations in atmospheric stability or wind velocity. Such conditions are particularly common near shoreline power plants. Simple plume rise formulas, which employ only a mean temperature gradient and a mean wind speed, cannot be expected to adequately treat an atmosphere whose lapse rate and wind velocity vary markedly with height. This paper tests the accuracy of a plume rise model which is capable of treating complex atmospheric structure because it integrates along the plume trajectory. The model consists of a set of ordinary differential equations, derived from the fluid equations of motion, with an entralnment parameterization to specify the mixing of ambient air into the plume. Comparing model predictions of final plume rise to field observations yields a root mean square difference of 24 m, which is 9 % of the average plume rise of 267 m. These predictions are more accurate than predictions given by three simpler models which utilize variants of a standard plume rise formula, the most accurate of the simpler models having a 12% error.  相似文献   

17.
In the May and June of 1998, field measurements were taken at a site near the Usery Pass Recreation Area, ∼27 miles from the downtown Phoenix area, overlooking Phoenix and Mesa, Arizona. This site was selected to examine the impacts of the Phoenix urban plume on the Usery Pass Recreation Area and surrounding regions. Data were obtained for ultraviolet-B (UVB) radiation, nitrogen dioxide (NO2), peroxyacetyl nitrate (PAN), ozone (O3), and carbon monoxide (CO). Nocturnal plumes of NO2 (in tens of ppb), observed near midnight, were correlated with CO and anti-correlated with O3. This behavior was consistent with the titration of locally generated NO by boundary layer O3 to form the nighttime NO2 plumes that were subsequently transported into the Usery Pass Recreation area. Nitrate radical (NO3) production rates were calculated to be very high on the edges of these nocturnal plumes. Examination of O3 and PAN data also indicates that Phoenix is being affected by long-range transport of pollutants from the Los Angeles to San Diego areas. A regional smoke episode was observed in May, accompanied by a decrease in UVB of factor of two and a decrease in O3 and an increase in methyl chloride. Low level back trajectories and chemical evidence confirm that the smoke event originated in northern Mexico and that the reduced O3 levels observed at Usery Pass could be partially due to reduced photolysis rates caused by carbonaceous soot aerosols transported in the smoke plume. The results are discussed with regard to potential effects of local pollution transport from the Phoenix air basin as well as an assessment of the contributions from long-range transport of pollutants to the background levels in the Phoenix-Usery Pass area.  相似文献   

18.
Numerical and approximate analytical solutions are compared for turbulent plume rise in a crosswind. The numerical solutions were calculated using the plume rise model of Hoult, Fay and Forney (1969, J. Air Pollut. Control Ass.19, 585–590), over a wide range of pertinent parameters. Some wind shear and elevated inversion effects are included. The numerical solutions are seen to agree with the approximate solutions over a fairly wide range of the parameters. For the conditions considered in the study, wind shear effects are seen to be quite small. A limited study was made of the penetration of elevated inversions by plumes. The results indicate the adequacy of a simple criterion proposed by Briggs (1969, AEC Critical Review Series, USAEC Division of Technical Information extension, Oak Ridge, Tennesse).  相似文献   

19.
The purpose of this study was to evaluate the performance of current regulatory algorithms for predicting plume rise for refinerytype sources (short stacks and a wide range of source conditions) and the performance of new or alternate algorithms which may provide better estimates. To meet the objectives, five plume rise algorithms were statistically evaluated against ten field and laboratory plume rise data bases. Two forms of the Briggs plume rise equations were tested because they are almost exclusively used in current EPA regulatory models. Two modified Briggs equations were tested to assess how simple modifications can Improve the accuracy of the estimates. The fifth algorithm was a numerical solution to the basic equations for conservation of mass, momentum, and energy often referred to as an Integral plume rise algorithm. This algorithm was selected because It handles the wide range of source and atmospheric boundary-layer conditions that affect trajectories of plumes from refinery stacks.

Ten independent plume rise data bases were assembled that covered a wide range of source and meteorological conditions. From the data bases, a total of 107 different data sets were obtained and each data set included plume rise observations versus downwind distance for one source and meteorological condition. Each model was run for each data set and the root-mean-square and mean error between model and observation was computed for use in statistically evaluating model performance.

The statistical evaluation of the algorithms showed that the rms error (considering all data bases) for the Integral plume rise algorithm was approximately 30 percent less than the errors for all other algorithms tested. This difference was significant at the 95 percent confidence level. The results suggest that improved plume rise estimates in regulatory models applied to refineries and other appropriate sources could be achieved to reduce costs and improve ambient air quality estimates through the use of an integral plume rise algorithm.  相似文献   

20.
Abstract

Based on data from the 1997 Investigación sobre Materia Particulada y Deterioro Atmosférico-Aerosol and Visibility Evaluation Research (IMADA-EVER) campaign and the inorganic aerosol model ISORROPIA, the response of inorganic aerosols to changes in precursor concentrations was calculated. The aerosol behavior is dominated by the abundance of ammonia and thus, changes in ammonia concentration are expected to have a small effect on particle concentrations. Changes in sulfate and nitrate are expected to lead to proportional reductions in inorganic fine particulate matter (PM2.5). Comparing the predictions of ISORROPIA with the observations, the lowest bias and error are achieved when the aerosols are assumed to be in the efflorescence branch. Including crustal species reduces the bias and error for nitrate but does not improve overall model performance. The estimated response of inorganic PM2.5 to changes in precursor concentrations is affected by the inclusion of crustal species in some cases, although average responses are comparable with and without crustal species. Observed concentrations of particle chloride suggest that gas phase concentrations of hydrogen chloride may not be negligible, and future measurement campaigns should include observations to test this hypothesis. Our ability to model aerosol behavior in Mexico City and, thus, design control strategies, is constrained primarily by a lack of observations of gas phase precursors. Future campaigns should focus in particular on better understanding the temporal and spatial distribution of ammonia concentrations. In addition, gas phase observations of nitric acid are needed, and a measure of particle water content will allow stable versus metastable aerosol behavior to be distinguished.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号