首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
During the Arctic Gas and Aerosol Sampling Program (AGASP) in March 1983, two distinctly different mechanisms for transporting stratospheric air into the Arctic troposphere were documented. A tropopause folding event, associated with an Arctic front, injected ‘perturbed’ polar stratospheric air into the troposphere. This perturbed polar stratospheric air was characterized by enhanced condensation nuclei concentrations (up to 1800 cm−3), enhanced aerosol light scattering (up to 90 × 10−6m−1), and crustal aerosol particles of probable volcanic origin.The second mechanism, large-scale anticyclonic subsidence, transported relatively ‘clean’ stratospheric air into the Arctic troposphere. This clean stratospheric air was characterized by relatively low condensation nuclei concentrations (maximum of 300 cm−3), low aerosol light scattering ([5–7] × 10−6 m−1), and the absence of detectable crustal particles.  相似文献   

2.
The aerosol scattering properties were investigated at two continental sites in northern China in 2004. Aerosol light scattering coefficient (σsp) at 525 nm, PM10, and aerosol mass scattering efficiencies (α) at Dunhuang had a mean value of 165.1±148.8 M m−1, 157.6±270.0 μg m−3, and 2.30±3.41 m2 g−1, respectively, while these values at Dongsheng were, respectively, 180.2±151.9 M m−1, 119.0±112.9 μg m−3, and 1.87±1.41 m2 g−1. There existed a seasonal variability of aerosol scattering properties. In spring, at Dunhuang PM10, σsp, and α were 184.1±211.548 μg m−3, 126.3±89.6 M m−1, and 1.05±0.97 m2 g−1, respectively, and these values at Dongsheng were 146.4±142.1 μg m−3, 183.4±81.7 M m−1, and 1.98±1.52 m2 g−1, respectively. However, in winter at Dunhuang PM10, σsp, and α were 158.1±261.4 μg m−3, 303.3±165.2 M m−1, and 3.17±1.93 m2 g−1, respectively, and these values at Dongsheng were 155.7±170.1 μg m−3, 304.4±158.1 M m−1, and 2.90±1.72 m2 g−1, respectively. σsp and α in winter were higher than that in spring at both the sites, which coincides with the characteristics of dust aerosol and pollution aerosol. Overall, the dominant aerosol types in spring and winter at both sites in northern China are dust aerosol and pollution aerosol, respectively.  相似文献   

3.
Samples from two strong homogeneous dust plumes from the Saharan desert reaching Izaña (Tenerife, Spain) in July and August 2005 were taken with a miniature impactor system and filter samplers. Size, aspect ratio and chemical composition of more than 22,000 individual particles were studied by scanning electron microscopy. The mineralogical phase composition of about 200 particles was investigated by transmission electron microscopy. In addition, the aerosol size distribution was measured with an optical particle spectrometer. In all samples, the aerosol was dominated by mineral dust with an average composition (by volume) of 64% silicates, 6% quartz, 5% calcium-rich particles, 14% sulfates, 1% hematite, 1% soot and 9% other carbonaceous material. Sulfate was found predominantly as coating on other particles with an average thickness of approximately 60 nm. The aerosol calcium content is correlated with the calcite concentrations of soils in the source region, highest values were observed for northern and central Algeria and Morocco. The average aspect ratio of the particles was 1.64. The distributions of the aspect ratios are parameterized by log-normal functions for modeling purpose. Single-scattering albedo (0.95) and asymmetry factor (0.74–0.81) was measured by polar aerosol photometry on filter samples using a light source resembling the solar spectrum. The apparent soot content of the sample (1 vol%) was determined by the same technique. From the mineralogical data, an average complex refractive index of 1.59–9×10−3i for visible light was derived. The imaginary part of the complex refractive index decreases with increasing particle size from −2.5×10−2i to <−10−3i, reflecting the decreasing hematite and soot contents. The imaginary part derived from optical measurements was −7×10−3i.  相似文献   

4.
Simultaneous continuous measurements of PM2.5, PM10, black carbon mass (BCae), Black smoke (BS) and particle number density (N) were conducted in the close vicinity of a high traffic road around Paris during a three-month period beginning in August 1997. In parallel some aerosol collection was performed on filters in order to assess the black carbon (BC), organic carbon (OC) and water soluble organic fractions (WSOC) of the freshly emitted traffic aerosols. The high hourly concentrations of PM2.5 (39±20 μg m−3), BCae (14±7 μg m−3), and N (220,000±115,000 cm−3), were found to be well correlated with each other. On average PM2.5 represented 66±13% of PM10 and appears to be composed primarily of BC (43±20%). On the contrary no correlation was found between PM2.5 and the coarse (PM10–PM2.5) mass fractions which was attributed to resuspension processes by vehicles. Black carbon mass concentrations obtained from both filter analyses (BC) and Aethalometre data (BCae) show a good agreement suggesting that the Aethalometre calibration based on a black carbon specific attenuation coefficient (σ) of 19 m2 g−1 is well adapted to nearby roadside measurements. Daily BC (used as a surrogate for fine particles) concentrations and wind speed were found to be anti-correlated. Average daily variations of BC could be related to traffic intensity and regime as well as to the boundary layer height. As expected for freshly emitted traffic aerosols, filter analyses indicated a high BC/TC ratio (29±5%) and a low mean WSOC/OC ratio (12.5±5%) for the bulk aerosol. For these two ratios no day/night differences were observed, the sampling station being probably too close to traffic to evidence photochemical modification of the aerosol phase. Finally, a linear relationship was found between BC and BS hourly concentrations (BC=0.10×BS+1.18; r2=0.93) which offers interesting perspectives to retrieve BC concentrations from existing BS archives.  相似文献   

5.
Carbonaceous aerosol particles were observed in a residential area with wood combustion during wintertime in Northern Sweden. Filter samples were analyzed for elemental carbon (EC) and organic carbon (OC) content by using a thermo-optical transmittance method. The light-absorbing carbon (LAC) content was determined by employing a commercial Aethalometer and a custom-built particle soot absorption photometer. Filter samples were used to convert the optical signals to LAC mass concentrations. Additional total PM10 mass concentrations and meteorological parameters were measured. The mean and standard deviation mass concentrations were 4.4±3.6 μg m−3 for OC, and 1.4±1.2 μg m−3 for EC. On average, EC accounted for 10.7% of the total PM10 and the contribution of OC to the total PM10 was 35.4%. Aethalometer and custom-built PSAP measurements were highly correlated (R2=0.92). The hourly mean value of LAC mass concentration was 1.76 μg m−3 (median 0.88 μg m−3) for the winter 2005–2006. This study shows that the custom-built PSAP is a reliable alternative for the commercial Aethalometer with the advantage of being a low-cost instrument.  相似文献   

6.
Experiments were performed to compare the capability of u.v. light, γ-radiation and simultaneous u.v. and γ-radiation to produce aerosol particles in a mixture of SO2, NO2 and synthetic air at different humidities. In the presence of u.v. radiation, γ-radiation was found to enhance the particle production at dose rates as low as 10−4 μGy s−1 at 0% r.h., and 2 × 10−2 μGy s−1 at 75% r.h. γ-radiation alone did not produce aerosol particles at the same dose rates. The possible processes underlying this synergistic effect are discussed.  相似文献   

7.
Different aspects of visibility degradation problems in Brisbane were investigated through concurrent visibility monitoring and aerosol sampling programs carried out in 1995. The relationship between the light extinction coefficients and aerosol mass/composition was derived by using multiple linear regression techniques. The visibility properties at different sites in Brisbane were found to be correlated with each other on a daily basis, but not correlated with each other hour by hour. The cause of scattering of light by moisture (bsw) was due to sulphate particles which shift to a larger size under high-humidity conditions. The scattering of light by particulate matter (bsp) was found to be highly correlated with the mass of fine aerosols, in particular the mass of fine soot, sulphate and non-soil K. For the period studied, on average, the total light extinction coefficient (bext) at five sites in Brisbane was 0.65×10−4 m−1, considerably smaller than those values found in other Australian and overseas cities. On average, the major component of bext is bsp (49% of bext), followed by bap (the absorption of light, mainly by fine soot particles, 28%), bsg (Rayleigh scattering, 20%) and bsw (3%). The absorption of light by NO2 (bag) is expected to contribute less than 5% of bext. On average, the percentage contribution of the visibility degrading species to bext (excluding bag) were: soot (53%), sulphate (21%), Rayleigh scattering (20%), non-soil K (2%) and humidity (3%). In terms of visibility degrading sources, motor vehicles (including soot and the secondary products) are expected to contribute more than half of the bext (excluding bag) in Brisbane on average, followed by secondary sulphates (17%) and biomass burning (10%).  相似文献   

8.
Brown carbon aerosols were recently found to be ubiquitous and effectively absorb solar radiation. We use a 3-D global chemical transport model (GEOS-Chem) together with aircraft and ground based observations from the TRACE-P and the ACE-Asia campaigns to examine the contribution of brown carbon aerosol to the aerosol light absorption and its climatic implication over East Asia in spring 2001. We estimated brown carbon aerosol concentrations in the model using the mass ratio of brown carbon to black carbon (BC) aerosols based on measurements in China and Europe. The comparison of simulated versus observed aerosol light absorption showed that the model accounting for brown carbon aerosol resulted in a better agreement with the observations in East Asian-Pacific outflow. We then used the model results to compute the radiative forcing of brown carbon, which amounts up to ?2.4 W m?2 and 0.24 W m?2 at the surface and at the top of the atmosphere (TOA), respectively, over East Asia. Mean radiative forcing of brown carbon aerosol is ?0.43 W m?2 and 0.05 W m?2 at the surface and at the TOA, accounting for about 15% of total radiative forcing (?2.2 W m?2 and 0.33 W m?2) by absorbing aerosols (BC + brown carbon aerosol), having a significant climatic implication in East Asia.  相似文献   

9.
The effect of black carbon (BC) on climate forcing is potentially important, but its estimates have large uncertainties due to a lack of sufficient observational data. The BC mass concentration in the southeastern US was measured at a regionally representative site, Mount Gibbes (35.78°N, 82.29°W, 2006 m MSL). The air mass origin was determined using 48-h back trajectories obtained from the hybrid single-particle Lagrangian integrated trajectory model. The highest average concentration is seen in polluted continental air masses and the lowest in marine air masses. During the winter, the overall average BC value was 74.1 ng m−3, whereas the overall summer mean BC value is higher by a factor of 3. The main reason for the seasonal difference may be enhanced thermal convection during summer, which increases transport of air pollutants from the planetary boundary layer of the surrounding urban area to this rural site. In the spring of 1998, abnormally high BC concentrations from the continental sector were measured. These concentrations were originating from a biomass burning plume in Mexico. This was confirmed by the observations of the Earth probe total ozone mapping spectrometer. The BC average concentrations of air masses transported from the polluted continental sector during summer are low on Sunday to Tuesday with a minimum value of 256 ng m−3 occurring on Monday, and high on Wednesday to Friday with a maximum value of 379 ng m−3 occurring on Friday. The net aerosol radiative forcing (scattering effects plus absorption effects) per unit vertical depth at 2006 m MSL is calculated to be −1.38×10−3 W m−3 for the southeastern US. The magnitude of direct radiative forcing by aerosol scattering is reduced by 15±7% due to the BC absorption.  相似文献   

10.
A detailed study of resuspension of 1.85 μm MMAD silica particles from five horizontal layers within a small scale spruce canopy was carried out in a wind tunnel in which saplings were exposed to a constant free stream wind speed of 5 m s−1. This provided quantitative estimates of the potential for a tree canopy contaminated with an aerosol deposit to provide (i) an airborne inhalation hazard within the forest environment and (ii) a secondary source of airborne contamination after an initial deposition event. Resuspension occurred with a flux of 1.05×10−7 g m−2 s−1 from spruce saplings initially contaminated at a level of 4.1×10−2 g m−2. An average resuspension rate (Λ) of 4.88×10−7 s−1 was obtained for the canopy as a whole. Values of Λ were significantly different (ANOVA, p<0.001) between canopy layers and Λ was markedly greater at the top of the canopy than lower down although there was a slight increase in Λ at the base of the canopy. The resuspended silica particles deposited onto the soil surface at an average rate of about 5.3×10−8 μg cm−2 s−1. It is concluded that resuspension under wind velocities similar to that used in the reported experiments is likely to pose a relatively small inhalation hazard to humans and a relatively minor source of secondary contamination of adjacent areas. Furthermore, resuspension rates are likely to diminish rapidly with time. The results are discussed in relation to the growing interest in the tree planting schemes in urban areas to reduce the impacts of air pollution.  相似文献   

11.
In an effort to reduce uncertainties in the quantification of aerosol direct radiative forcing (ADRF) in the southeastern United States (US), a field column experiment was conducted to measure aerosol radiative properties and effects at Mt. Mitchell, North Carolina, and at an adjacent valley site. The experimental period was from June 1995 to mid-December 1995. The aerosol optical properties (single scattering albedo and asymmetry factor) needed to compute ADRF were obtained on the basis of a procedure involving a Mie code and a radiative transfer code in conjunction with the retrieved aerosol size distribution, aerosol optical depth, and diffuse-to-direct solar irradiance ratio. The regional values of ADRF at the surface and top of atmosphere (TOA), and atmospheric aerosol absorption are derived using the obtained aerosol optical properties as inputs to the column radiation model (CRM) of the community climate model (CCM3). The cloud-free instantaneous TOA ADRFs for highly polluted (HP), marine (M) and continental (C) air masses range from 20.3 to −24.8, 1.3 to −10.4, and 1.9 to −13.4 W m−2, respectively. The mean cloud-free 24-h ADRFs at the TOA (at the surface) for HP, M, and C air masses are estimated to be −8±4 (−33±16), −7±4 (−13±8), and −0.14±0.05 (−8±3) W m−2, respectively. On the assumption that the fractional coverage of clouds is 0.61, the annual mean ADRFs at the TOA and the surface are −2±1, and −7±2 W m−2, respectively. This also implies that aerosols currently heat the atmosphere over the southeastern US by 5±3 W m−2 on annual timescales due to the aerosol absorption in the troposphere.  相似文献   

12.
In order to understand the influence of dust and anthropogenic pollution aerosols on regional climate in East Asia, we analyzed the aerosol optical, chemical and physical properties for two cases with high aerosol loading and assessed the radiative forcing of these cases. The 1st case study is a heavy dust episode (DE) in April (during ACE-Asia) 2001 and the 2nd case is a regional-scale pollution event in November 2001. The Ångström exponent (Å) for DE was 0.38 from sunphotometer measurements. The mean single scattering albedo (550 nm) at the surface reported during the pollution episode (PE, 0.88) was lower than that of DE (0.91). The concentrations of organic (OC) and elemental carbon (EC) measured during the PE were about 90% and 30% higher than DE. The aerosol mass scattering efficiency (αs) of PE is a factor of about 2 higher than that of the DE. The difference in the mass absorption efficiency (αa) of EC during DE and PE is small and within the measurement uncertainty. The diurnally averaged aerosol radiative forcing efficiency (ΔDFE, W m−2 τ1) during DE is similar to results of other studies at Gosan.  相似文献   

13.
We investigated CO photoproduction from intact leaves of rice (Oryza sativa L.) and maize (Zea mays L.) by laboratory experiments. CO photoproduction showed positive correlation with light intensity and was positively dependent on oxygen concentration. The average CO photoproduction was 2.6±0.3×1010 molecules cm−2 s−1 from rice leaves and 2.2±0.1×1010 molecules cm−2 s−1 from maize leaves (n=5) at a radiation intensity of 49 mW cm−2. CO photoproduction from senescent rice leaves was 9 times greater (25.7±1.5×1010 molecules cm−2 s−1, n=2) at the same radiation intensity than from live leaves, and responded slowly to changes in oxygen concentration and light intensity. CO photoproduction showed no correlation with CO2 concentration or humidity. This indicates that CO photoproduction in leaves is not directly controlled by carbon metabolism or stomatal conductance. The lack of dependence on stomatal conductance leads to the conclusion that the diffusion of CO from inside the leaves to the atmosphere is not a controlling factor for CO photoproduction from rice and maize leaves.  相似文献   

14.
The photooxidation of methylhydroperoxide (MHP) and ethylhydroperoxide (EHP) was studied in the aqueous phase under simulated cloud droplet conditions. The kinetics and the reaction products of direct photolysis and OH-oxidation were studied for both compounds. The photolysis frequencies obtained were JMHP=4.5 (±1.0)×10−5 s−1 and JEHP=3.8 (±1.0)×10−5 s−1 for MHP and EHP respectively at 6 °C. The rate constants of OH-oxidation of MHP at 6 °C were 6.3 (±2.6)×108 M−1 s−1 and 5.8 (±1.9)×108 M−1 s−1 relative to ethanol and 2-propanol respectively, and the rate constant of OH-oxidation of EHP was 2.1 (±0.6)×109 M−1 s−1 relative to 2-propanol at 6 °C. The reaction products obtained were not only the corresponding aldehydes, but also the corresponding acids, and hydroxyhydroperoxides as primary reaction products. The yields for these products were sensitive to the pH value. The carbon balance was higher than 85% for all experiments, showing that most reaction products were detected. A chemical mechanism was proposed for each reaction, and the atmospheric implications were discussed.  相似文献   

15.
Sampling and analysis of carbonaceous compounds in particulate matter presents a number of difficulties related to artefacts during sampling and to the distinction between organic (OC) and elemental carbon (EC) during analysis. Our study reports on a comparative analysis of OC, EC and WSOC (water-soluble organic carbon) concentrations, as well as sampling artefacts, for PM2.5 aerosol in three European cities (Amsterdam, Barcelona and Ghent) representing Southern and Western European urban environments. Comparability of results was ensured by using a single system for sample analysis from the different sites. OC and EC concentrations were higher in the vicinity of roads, thus having higher levels in Amsterdam (3.9–6.7 and 1.7–1.9 μg m−3, respectively) and Barcelona (3.6–6.9 and 1.5–2.6 μg m−3) than in Ghent (2.7–5.4 and 0.8–1.2 μg m−3). A relatively larger influence of secondary organic aerosols (SOA), as deduced from a larger OC/EC ratio, was observed in Ghent. In absolute sense, WSOC concentrations were similar at the three sites (1.0–2.3 μg m−3). Positive artefacts were higher in Southern (11–16% of the OC concentration in Barcelona) than in Western Europe (5–12% in Amsterdam, 5–7% in Ghent). During special episodes, the contribution of carbonaceous aerosols from non-local sources accounted for 67–69% of the OC concentration in Western Europe, and for 44% in Southern Europe.  相似文献   

16.
Arctic haze observed during polar flights from Anchorage, Alaska, to Thule, Greenland, and Thule to Bodo, Norway, during March 1983, was widespread over the entire Arctic region flown. The distribution of this haze exhibited strong horizontal and vertical variability resulting from the synopticmeteorological situations encountered: e.g. the presence of fronts and haze transport zones. Condensation nuclei concentrations of about 500 cm−3 and aerosol scattering extinction values of about 4 × 10−5m−1 were typical for Arctic haze layers. Intrusions of stratospheric air into the Arctic troposphere through tropopause folds were observed twice, suggesting that these events might occur quite frequently in the springtime Arctic atmosphere.  相似文献   

17.
During the month of August 2004, the size-resolved number concentration of water-insoluble aerosols (WIA) from 0.25 to 2.0 μm was measured in real-time in the urban center of Atlanta, GA. Simultaneous measurements were performed for the total aerosol size distribution from 0.1 to 2.0 μm, the elemental and organic carbon mass concentration, the aerosol absorption coefficient, and the aerosol scattering coefficient at a dry (RH=30%) humidity. The mean aerosol number concentration in the size range 0.1–2.0 μm was found to be 360±175 cm−3, but this quantity fluctuated significantly on time scales of less than one hour and ranged from 25 to 1400 cm−3 during the sample period. The mean WIA concentration (0.25–2.0 μm) was 13±7 cm−3 and ranged from 1 to 60 cm−3. The average insoluble fraction in the size range 0.25–2.0 μm was found to be 4±2.5% with a range of 0.3–38%. The WIA population was found to follow a consistent diurnal pattern throughout the month with concentration maxima concurring with peaks in vehicular traffic flow. WIA concentration also responded to changes in meteorological conditions such as boundary layer depth and precipitation events. The temporal variability of the absorption coefficient followed an identical pattern to that of WIA and ranged from below the detection limit to 55 Mm−1 with a mean of 8±6 Mm−1. The WIA concentration was highly correlated with both the absorption coefficient and the elemental carbon mass concentration, suggesting that WIA measurements are dominated by fresh emissions of elemental carbon. For both the total aerosol and the WIA size distributions, the maximum number concentration was observed at the smallest sizes; however the WIA size distribution also exhibited a peak at 0.45 μm which was not observed in the total population. Over 60% of the particles greater than 1.0 μm were observed to be insoluble in the water sampling stream used by this instrumentation. Due to the refractive properties of black carbon, it is highly unlikely that these particles could be composed of elemental carbon, suggesting a crustal source for super-micron WIA.  相似文献   

18.
A study of carbonaceous particulate matter (PM) was conducted in the Middle East at sites in Israel, Jordan, and Palestine. The sources and seasonal variation of organic carbon, as well as the contribution to fine aerosol (PM2.5) mass, were determined. Of the 11 sites studied, Nablus had the highest contribution of organic carbon (OC), 29%, and elemental carbon (EC), 19%, to total PM2.5 mass. The lowest concentrations of PM2.5 mass, OC, and EC were measured at southern desert sites, located in Aqaba, Eilat, and Rachma. The OC contribution to PM2.5 mass at these sites ranged between 9.4% and 16%, with mean annual PM2.5 mass concentrations ranging from 21 to 25 ug m?3. These sites were also observed to have the highest OC to EC ratios (4.1–5.0), indicative of smaller contributions from primary combustion sources and/or a higher contribution of secondary organic aerosol. Biomass burning and vehicular emissions were found to be important sources of carbonaceous PM in this region at the non-southern desert sites, which together accounted for 30%–55% of the fine particle organic carbon at these sites. The fraction of measured OC unapportioned to primary sources (1.4 μgC m?3 to 4.9 μgC m?3; 30%–74%), which has been shown to be largely from secondary organic aerosol, is relatively constant at the sites examined in this study. This suggests that secondary organic aerosol is important in the Middle East during all seasons of the year.  相似文献   

19.
Rate constants for the gas-phase reactions of the OH radical with 1-methylnaphthalene and of N2O5 with 1- and 2-methylnaphthalene and 2,3-dimethylnaphthalene have been determined at 298 ± 2 K by use of relative rate techniques. The rate constants determined were: for the reaction of OH radicals with 1-methylnaphthalene, (5.30 ± 0.48) × 10−11 cm3 molecule−1 s−1; for the reaction of N2O5 with 1-methylnaphthalene, 2-methylnaphthalene and 2,3-dimethylnaphthalene, (3.3 ± 0.7) × 10−17, (4.2 ± 0.9) × 10−17 and (5.7 ± 1.9) × 10−17 cm3 molecule−1 s−1, respectively. In addition, an upper limit to the rate constant of 1.3 × 10−19 cm3 molecule−1 s−1 was measured for the reaction of O3 with 1-methylnaphthalene at 298 ± 2 K. These data, when combined with data from previous literature, allow the atmospheric gas-phase removal processes of these alkylnaphthalenes to be quantified.  相似文献   

20.
The chemical and optical properties of particle emissions from onroad vehicles were investigated at the Allegheny Tunnel on the Pennsylvania Turnpike during July 1981. The optical results are in agreement with earlier data: (1) in terms of light extinction per km driven, diesel particle emissions are at least an order of magnitude more important than particle emissions from spark-ignition vehicles; (2) for diesel particle emissions, light absorption is about twice as efficient as light scattering. Chemical analyses showed that: (1) 24% of the vehicle aerosol was extractable material, (2) 75% of the total mass was carbon, (3) 55% of the total mass was unextractable (elemental) carbon, and (4) the stoichiometry of the extractable fraction of the diesel particle emissions was CnHt.7nN0.05n , i.e., the extractable material was composed predominantly of alkanes. The results of the chemical analyses allow the calculation of the massspecific light absorption coefficient for the elemental carbon component of the diesel particle emissions, i.e., 10.9 ± 1.8 m2/g (500 nm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号