首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

This study was conducted to evaluate the performance of an innovative two-stage process, BIOCELL, that was developed to produce hydrogen (H2) and methane (CH4) from food waste on the basis of phase separation, reactor rotation mode, and sequential batch technique. The BIOCELL process consisted of four leaching-bed reactors for H2 recovery and post-treatment and a UASB reactor for CH4 recovery. The leaching-bed reactors were operated in a rotation mode with a 2-day interval between degradation stages. The sequential batch technique was useful to optimize environmental conditions during H2 fermentation. The BIOCELL process demonstrated that, at the high volatile solids (VS) loading rate of 11.9 kg/m3-day, it could remove 72.5% of VS and convert VSremoved to H2 (28.2%) and CH4 (69.9%) on a chemical oxygen demand (COD) basis in 8 days. H2 gas production rate was 3.63 m3/m3 ·day, while CH4 gas production rate was 1.75 m3/m3 ·day. The yield values of H2 and CH4 were 0.31 and 0.21 m3/kg VSadded, respectively. Moreover, the output from the post-treatment could be used as a soil amendment. The BIOCELL process proved to be stable, reliable, and effective in resource recovery as well as waste stabilization.  相似文献   

2.
Photochemical reactions of a C3H6-NO2-air system in the presence of metal oxide were investigated. The metal oxides showing strong photooxidation activity were found to be n-type semiconductor oxides with the energy band gap around 3 eV. Formation of cyano-compounds (HCN and CH3CN) was also observed and the activity can be explained in terms of the adsorptivity of NO onto metal oxides. Coalfired fly ash as a model of mixed metal oxides was also examined and their photocatalytic action was discussed.  相似文献   

3.
The objective of the study was to quantify the concentration and emission levels of sulfuric odorous compounds emitted from pig-feeding operations. Five types of pig-housing rooms were studied: gestation, farrowing, nursery, growing and fattening rooms. The concentration range of sulfuric odorous compounds in these pig-housing rooms were 30–200 ppb for hydrogen sulfide (H2S), 2.5–20 ppb for methyl mercaptan (CH3SH), 1.5–12 ppb for dimethyl sulfide (DMS; CH3SCH3) and 0.5–7 ppb for dimethyl disulfide (DMDS; CH3S2CH3), respectively. The emission rates of H2S, CH3SH, DMS and DMDS were estimated by multiplying the average concentration (mg m−3) measured near the air outlet by the mean ventilation rate (m3 h−1) and expressed either per area (mg m−2 h−1) or animal unit (AU; liveweight of the pig, 500 kg) (mg pig−1 h−1). As a result, the emission rates of H2S, CH3SH, DMS and DMDS in the pig-housing rooms were 14–64, 0.8–7.3, 0.4–3.4 and 0.2–1.9 mg m−2 h−1, respectively, based on pig's activity space and 310–723, 18–80, 9–39 and 5–22 mg AU−1 h−1, respectively, based on pig's liveweight, which indicates that their emission rates were similar, whether based upon the pig's activity space or liveweight. In conclusion, the concentrations and emission rates of H2S were highest in the fattening room followed by the growing, nursery, farrowing and gestation rooms whereas those of CH3SH, DMS and DMDS concentrations were largest in the growing room followed by the nursery, gestation and farrowing rooms.  相似文献   

4.
Rates of CO2 production in the reaction CO + OH and CO + OH + halocarbon have been used to determine rate constants for some OH + halocarbon reactions at 29.5°C relative to that of k(CO + OH) = 2.69 × 10?13 cm3 molecule?1 sec?1. The following rate constants were obtained: k(OH + CH3Cl) = 3.1 ± 0.8, k(OH + CH2Cl2) = 2.7 ± 1.0, k(OH + C2H5Cl) = 44.0 ± 25, k(OH + CICH2CH2CI) = 6.5, (<29) and k(OH + CH3CCl3) = 2.1 (<5.7) cm3 molecule?1 sec?1 × 10?14. The k values, CH2Cl2 excepted, are in substantial agreement with determinations made in nonoxygen environments. The present results for CH2Cl2 are almost certainly in error due to difficulties with the competitive approach used.  相似文献   

5.
This paper describes a study of the products of the Cl-atom-initiated oxidation of three alkyl iodides, RI=CH3I, C2H5I, and 2-C3H7I, carried out in synthetic air at atmospheric pressure and at room temperature. Fourier-transform infrared spectroscopy was used to follow the decay of reactants and subsequent formation of products. The primary step proceeds via two channels, one of which yields HCl and an iodinated alkyl radical, and the other I atoms and an alkyl chloride. Quantitative analysis of the product yields, together with an assessment of the formation of HCl in secondary processes, allowed the fractional branching into the two channels to be calculated. The channel yielding HCl from RI constitutes a fraction 0.59, 0.93, and 0.68 for R=CH3, C2H5, and 2-C3H7. The iodinated alkyl radical forms first a peroxy, and then an alkoxy, radical in the presence of air. The final products CH2O, CH3CHO, and CH3COCH3 were observed as expected for the decomposition of these radicals with RI=CH3I, C2H5I, and 2-C3H7I, and the fractions of the alkoxy radicals fragmenting to the carbonyl compounds were 0.88, 0.57, and 0.86, respectively. Atomic iodine is formed concomitantly with the carbonyl species, so that these fractions also indicate the yield of I atoms in the secondary process. Alternative reaction pathways for the iodinated alkoxy radicals, in particular reaction with O2, are evaluated and discussed. The yields of I atoms in the primary and secondary steps, taken in combination with kinetic data, make it possible to estimate the contribution of the Cl-initiated oxidation of the alkyl halides to I-atom production in the atmosphere (and, making certain assumptions, the analogous contribution from OH-initiated oxidation). Radical-initiated processes might augment the photolytic yield of I atoms from simple alkyl iodides: the maximum enhancements lie between 5% (CH3I) and more than 30% (2-C3H7I).  相似文献   

6.
Acrylate esters are α,β-unsaturated esters that contain vinyl groups directly attached to the carbonyl carbon. These compounds are widely used in the production of plastics and resins. Atmospheric degradation processes of these compounds are currently not well understood. The kinetics of the gas phase reactions of OH radicals with methyl 3-methylacrylate and methyl 3,3-dimethylacrylate were determined using the relative rate technique in a 50 L Pyrex photoreactor using in situ FTIR spectroscopy at room temperature (298?±?2 K) and atmospheric pressure (708?±?8 Torr) with air as the bath gas. Rate coefficients obtained were (in units cm3 molecule?1 s?1): (3.27?±?0.33)?×?10?11 and (4.43?±?0.42)?×?10?11, for CH3CH═CHC(O)OCH3 and (CH3)2CH═CHC(O)OCH3, respectively. The same technique was used to study the gas phase reactions of hexyl acrylate and ethyl hexyl acrylate with OH radicals and Cl atoms. In the experiments with Cl, N2 and air were used as the bath gases. The following rate coefficients were obtained (in cm3 molecule?1 s?1): k3 (CH2═CHC(O)O(CH2)5CH3?+?Cl)?=?(3.31?±?0.31)?×?10?10, k4(CH2═CHC(O)OCH2CH(CH2CH3)(CH2)3CH3?+?Cl)?=?(3.46?±?0.31)?×?10?10, k5(CH2═CHC(O)O(CH2)5CH3?+?OH)?=?(2.28?±?0.23)?×?10?11, and k6(CH2═CHC(O)OCH2CH(CH2CH3)(CH2)3CH3?+?OH)?=?(2.74?±?0.26)?×?10?11. The reactivity increased with the number of methyl substituents on the double bond and with the chain length of the alkyl group in –C(O)OR. Estimations of the atmospheric lifetimes clearly indicate that the dominant atmospheric loss process for these compounds is their daytime reaction with the hydroxyl radical. In coastal areas and in some polluted environments, Cl atom-initiated degradation of these compounds can be significant, if not dominant. Maximum Incremental Reactivity (MIR) index and global warming potential (GWP) were also calculated, and it was concluded that these compounds have significant MIR values, but they do not influence global warming.  相似文献   

7.
Biodegradation tests with bacteria from activated sludge revealed the probable persistence of cyano-based ionic liquid anions when these leave waste water treatment plants. A possible biological treatment using bacteria capable of biodegrading similar compounds, namely cyanide and cyano-complexes, was therefore examined. With these bacteria from the genera Cupriavidus, the ionic liquid anions B(CN)4 ?, C(CN)3 ?, N(CN)2 ? combined with alkaline cations were tested in different growth media using ion chromatography for the examination of their primary biodegradability. However, no enhanced biodegradability of the tested cyano-based ionic liquids was observed. Therefore, an in vitro enzymatic hydrolysis test was additionally run showing that all tested ionic liquid (IL) anions can be hydrolysed to their corresponding amides by nitrile hydratase, but not by nitrilase under the experimental conditions. The biological stability of the cyano-based anions is an advantage in technological application, but the occurrence of enzymes that are able to hydrolyse the parent compound gives a new perspective on future cyano-based IL anion treatment.  相似文献   

8.
Serious contamination problems are encountered when measuring organic acids in polar ice. Using an involved experimental protocol, methanesulfonate, formate and acetate have been investigated in ice core sections from Antarctica. With CH3SO3 concentrations of a few ppb, HCOOat a few tenths of ppb and CH3COO around our detection limit, the organic acids represent only a small percentage of the total acidity in Antarctic ice.Analysis of the various possible sources indicates that methane is probably the major atmospheric precursor (via formaldehyde) of formate present in the ice.The significant presence of CH3SO3 in Antarctic ice confirms the preponderant role played by marine biogenic emissions in the Antarctic sulfate budget. The CH3SO3 ratio with respect to non-sea-salt sulfate is higher in Antarctic precipitation than in marine aerosol. Finally, CH3SO3 in polar ice is suggested to be a more suitable parameter than excess sulfate for the study of marine biogenic emissions in the past.  相似文献   

9.
Air pollution has a great impact on the social and economic aspects all over the world. In order to account the human interaction with the atmospheric environment, a suitable scientific basis is needed.That is why six physicochemical quantities have been determined in a previous work for each one heterogeneous system between organic volatile pollutants and oxide-pigments of works of art. This investigation is extended in order to determine experimentally five new ones. Thus, a more precise contribution to the elucidation of the mechanism of the deterioration of various works of art in museums is achieved. These physicochemical quantities are: (1) local adsorption energies, (2) local monolayer capacities, (3) local adsorption isotherms, (4) density probability function, and (5) pollutant concentration on the oxide-pigment at equilibrium. All these adsorption parameters mentioned above have been calculated as a function of experimental time for the systems: C6H6/TiO2, C6H6/NO2/TiO2, C6H6/Cr2O3, C6H6/NO2/Cr2O3, C6H5CH3/TiO2, C6H5CH3/NO2/TiO2, C6H5CH3/Cr2O3, C6H5CH3/NO2/Cr2O3, C6H6/PbO, C6H6/NO2/PbO, C6H5CH3/PbO, and C6H5CH3/NO2/PbO for the first time. Thus, in this work we shall stress the recent new aspect of Reversed Flow-(Inverse) Gas Chromatography (RF-GC or RF-IGC), i.e. the time-resolved chromatography related to the evaluation of some important adsorption parameters. Gas Chromatography is a promising meeting place of surface science and atmospheric chemistry.  相似文献   

10.
A few studies have reported the occurrence of monoethylmercury (CH3CH2Hg+) in the natural environment, but further verification is needed due to the lack of direct evidence and/or uncertainty in analytical procedures. Various analytical techniques were employed to verify the occurrence of CH3CH2Hg+ in soil of the Florida Everglades. The identity of CH3CH2Hg+ in Everglades soil was clarified, for the first time, by GC/MS. The employment of the recently developed aqueous phenylation-purge-and-trap-GC coupled with ICPMS confirmed that the detected CH3CH2Hg+ was not a misidentification of CH3SHg+. Stable isotope-tracer experiments further indicated that the detected CH3CH2Hg+ indeed originated from Everglades soil and was not an analytical artifact. All these evidence clearly confirmed the occurrence of CH3CH2Hg+ in Everglades soil, presumably as a consequence of ethylation occurring in this wetland. The prevalence of CH3CH2Hg+ in Everglades soil suggests that ethylation could play an important role in the biogeochemical cycling of Hg.  相似文献   

11.
This sensitive, albeit precarious, method for measuring ppb-ppt (V/V) concentrations of H2S was examined for various sources of potential error within the procedure. Filter preparation, filter storage, filter extraction, fluorimetric reagent stabilities, matrix differences between standards and samples, and possible interferences from other sulfur-containing compounds were separately studied for their effects on the analytical performance of the method. The overall method showed no Interference from SO2, CS2, COS, CH3SH, CH3SCH3, and SO4 -2. To minimize bias and obtain a reliable estimate of precision, the method should be calibrated with H2S standards rather than liquid bisulfide standards. The measurement precision is a function of the quantity of H2S collected as Ag2S and/or AgSH on the impregnated filters. Because of the method’s linear dynamic range, sufficient air should be sampled to achieve filter loadings of 15 to 35 ng S/filter. A quality control method based on fluorescein mercuric acetate (FMA) is presented that ensures data quality while reducing the otherwise frequent need for fluori-metric calibration.  相似文献   

12.
Measurements of negative chemiions (CI) emitted by a jet engine at the ground were made with an ion trap mass spectrometer. The new instrument offered a high-mass resolution, which led to a first unambiguous identification of negative CI formed by a jet engine. The observed ions are HSO4(H2SO4)a clusters proved by an isotope study. From the mass spectra an efficiency ε for fuel sulfur conversion to SVI of 2%±0.8 could be inferred. In addition thermodynamic properties of the observed cluster ions were inferred from measured ion abundance ratios. An effective free energy ΔGa−1,a0=−14 kcal/mol was calculated (for a=3) and an enthalpy of ΔHa−1,a0=−24 (for a=3) kcal/mol was estimated. This indicates a low stability of HSO4(H2SO4)a (a⩾3) cluster ions against thermal detachment of H2SO4 at the high temperatures of our experiment. However the low temperatures at cruise altitudes around 10–12 km lead to high H2SO4/H2O supersaturation and therefore a rapid growth of HSO4(H2SO4)a cluster ions seems to be possible which is not hindered by thermal H2SO4 detachment.  相似文献   

13.
Abstract

The traditional technologies for odor removal of thiol usually create either secondary pollution for scrubbing, adsorption, and absorption processes, or sulfur (S) poisoning for catalytic incineration. This study applied a laboratory-scale radio-frequency plasma reactor to destructive percentage-grade concentrations of odorous dimethyl sulfide (CH3SCH3, or DMS). Odor was diminished effectively via reforming DMS into mainly carbon disulfide (CS2) or sulfur dioxide (SO2). The removal efficiencies of DMS elevated significantly with a lower feeding concentration of DMS or a higher applied rf power. A greater inlet oxygen (O2)/DMS molar ratio slightly improved the removal efficiency. In an O2-free environment, DMS was converted primarily to CS2, methane (CH4), acetylene (C2H2), ethylene (C2H4), and hydrogen (H2), with traces of hydrogen sulfide (H2S), methyl mercaptan (CH3SH), and dimethyl disulfide. In an O2-containing environment, the species detected were SO2, CS2, carbonyl sulfide, carbon dioxide (CO2), CH4, C2H4, C2H2, H2, formal-dehyde, and methanol. Differences in yield of products were functions of the amounts of added O2 and the applied power. This study provided useful information for gaining insight into the reaction pathways for the DMS dissociation and the formation of products in the plasmolysis and conversion processes.  相似文献   

14.
The thermal decomposition of polyethylene glycol was investigated by using a technique combining evolved gas analysis (time-resolved pyrolysis) with ion-attachment mass spectrometry. This technique allows the detection of intact pyrolysis products and, therefore, offers the opportunity for direct real-time monitoring of thermal by-products. Unstable products can thus be detected; for instance, many highly reactive organic peroxides, such as CH3OOH and HOCH2OOH, were found in this study. Classification analysis revealed 10 major compositional formulas among the product species: CnH2n+2O, CnH2n+2O2, CnH2n+2O3, CnH2n+2O4, CnH2n+2O5, CnH2n+2O6, CnH2n+2O7, CnH2nO, CnH2nO2, and HO(CH2CH2O)nH ethylene glycol oligomers. The Li+ ion adduct mass spectra showed a characteristic profile in terms of both the appearance of unique components and the distribution of pyrolysis products. Among the products of the thermal decomposition of PEG, formaldehyde (HCHO) and organic peroxides were particularly interesting. Formaldehyde, one of the 10 most abundant products, is a known human carcinogen. The detection of peroxides suggests that they may form during the incineration of PEG, which may have important environmental implications. The existence of peroxide products may have implications for chemical evolution in incinerator systems.  相似文献   

15.
In a laboratory study we investigated 1) the potential production of nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) and 2) the effect of nitrate (NO3?) and anaerobic N2O development on CH4 production in sediment from a recently recreated free surface water wetland (FSWW) and in soil from an adjacent meadow. We designed an experiment where production of greenhouse gases was registered at the time of maximum net development of N2O. We made additions of biodegradable carbon (glucose) and/or NO3? to sediment and soil slurries and incubated them at four temperatures (4, 13, 20, 28 °C). Gas production from both substrates was positively correlated with temperature. We also found that the sediment produced more N2O than the soil. N2O production in sediment was NO3? limited, whereas in soil carbon availability was lower and only combined additions of NO3? and glucose supported increased N2O development. CH4 production was generally low and did not differ between soil and sediment. Nor did glucose addition increase CH4 rates. The results suggest that neither soil nor sediment environment did support development of methanogenic populations. There were no clear effects of NO3? on CH4 production. However, the highest records of CH4 were found in incubations with low N2O production, which indicates that N2O might be toxic to methanogens. In summary, our study showed that transforming meadows into FSWWs implies a risk of increased N2O emissions. This does not seem to be valid for CH4. However, since N2O is almost always produced wherever NO3? is denitrified, increased N2O production in wetlands leads to reduced rates in downstream environments. Hence, we conclude that when balancing NO3? retention and global warming aspects, we find no reason to discourage future creation or restoration of wetlands.  相似文献   

16.
An interpretative modeling analysis is conducted to simulate the diurnal variations in OH and HO2+RO2 observed at Summit, Greenland in 2003. The main goal is to assess the HOx budget and to quantify the impact of snow emissions on ambient HOx as well as on CH2O and H2O2. This analysis is based on composite diurnal profiles of HOx precursors recorded during a 3-day period (July 7–9), which were generally compatible with values reported in earlier studies. The model simulations can reproduce the observed diurnal variation in HO2+RO2 when they are constrained by observations of H2O2 and CH2O. By contrast, model predictions of OH were about factor of 2 higher than the observed values. Modeling analysis of H2O2 suggests that its distinct diurnal variation is likely controlled by snow emissions and loss by deposition and/or scavenging. Similarly, deposition and/or scavenging sinks are needed to reproduce the observed diel profile in CH2O. This study suggests that for the Summit 2003 period snow emissions contribute ∼25% of the total CH2O production, while photochemical oxidation of hydrocarbon appears to be the dominant source. A budget assessment of HOx radicals shows that primary production from O(1D)+H2O and photolysis of snow emitted precursors (i.e., H2O2 and CH2O) are the largest primary HOx sources at Summit, contributing 41% and 40%, respectively. The snow contribution to the HOx budget is mostly in the form of emissions of H2O2. The dominant HOx sink involves the HO2+HO2 reaction forming H2O2, followed by its deposition to snow. These results differ from those previously reported for the South Pole (SP), in that primary production of HOx was shown to be largely driven by both the photolysis of CH2O and H2O2 emissions (46%) with smaller contributions coming from the oxidation of CH4 and the O(1D)+H2O reaction (i.e., 27% each). In sharp contrast to the findings at Summit in 2003, due to the much higher levels of NOx, the SP HOx sinks are dominated by HOx–NOx reactions, leading to the formation and deposition of HNO3 and HO2NO2. Thus, a comparison between SP and Summit studies suggests that snow emissions appear to play a prominent role in controlling primary HOx production in both environments. However, as regards to maintaining highly elevated levels of OH, the two environments differ substantially. At Summit the elevated rate for primary production of HOx is most important; whereas, at SP it is the rapid recycling of the more prevalent HO2 radical, through reaction with NO, back to OH that is primarily responsible.  相似文献   

17.
In conjunction with the OP3 campaign in Danum Valley, Malaysian Borneo, flux measurements of methyl chloride (CH3Cl) and methyl bromide (CH3Br) were performed from both tropical plant branches and leaf litter in June and July 2008. Live plants were mainly from the Dipterocarpaceae family whilst leaf litter samples were representative mixtures of different plant species. Environmental parameters, including photosynthetically-active radiation, total solar radiation and air temperature, were also recorded. The dominant factor determining magnitude of methyl halide fluxes from living plants was plant species, with specimens of the genus Shorea showing persistent high emissions of both gases, e.g. Shorea pilosa: 65 ± 17 ng CH3Cl h?1 g?1 (dry weight foliage) and 2.7 ± 0.6 ng CH3Br h?1 g?1 (dry weight foliage). Mean CH3Cl and CH3Br emissions across 18 species of plant were 19 (range, <LOD ?76) and 0.4 (<LOD ?2.9) ng h?1 g?1 respectively; fluxes from leaf litter were 1–2 orders of magnitude smaller per dry mass. CH3Cl and CH3Br fluxes were weakly correlated. Overall, the findings suggest that tropical rainforests make an important contribution to global terrestrial emissions of CH3Cl, but less so for CH3Br.  相似文献   

18.
含重金属铜离子与氰离子(CN)的络合物广泛存在于电镀、冶金等工业废水中,是一种较难处理的污染物。富含活性氯和Al13聚合体的水处理药剂(PACC)兼具氧化和絮凝效能,在处理含重金属氰络合物([Cu(CN)3]2-)废水方面具有良好的应用前景。研究PACC与[Cu(CN)3]2-的反应计量学、动力学,考察了pH、反应时间和投药量等影响因素,确定PACC的最佳工作参数。结果表明,PACC可同时实现对CN的氧化和对Cu2+的絮凝,有效去除水中[Cu(CN)3]2-。使用PACC对[Cu(CN)3]2-的无害化处置过程分为2个阶段:CN-首先被氧化成氰酸根(OCN-);然后OCN-被进一步氧化并生成碳酸氢根和氮气,同时所释放的游离态铜离子被絮凝去除。这2个阶段反应的最佳pH分别为11和8,去除1 mol[Cu(CN)3]2-的最佳投药量为9.35 mol Cl2的PACC;在此条件下反应43 min后,其出水中CN-和Cu2+的浓度均达到排放标准(GB21900-2008)要求。  相似文献   

19.
ABSTRACT

The purpose of this research was to determine the efficiency of a polymer biocover for the abatement of H2S and NH3 emissions from an east-central Missouri swine lagoon with a total surface area of 7800 m2. The flux rate of NH3, H2S, and CH4 was monitored continuously from two adjacent, circular (d = 66 m) control and treatment plots using a nonintrusive, micrometeorological method during three independent sampling periods that ranged between 52 and 149 hr. Abatement rates were observed to undergo a temporal acclimation event in which NH3 abatement efficiency improved from 17 to 54% (p = <0.0001 to 0.0005) and H2S abatement efficiency improved from 23 to 58% (p < 0.0001) over a 3-month period. The increase in abatement efficiency for NH3 and H2S over the sampling period was correlated with the development of a stable anaerobic floc layer on the bottom surface of the biocover that reduced mass transfer of NH3 and H2S across the surface. Analysis of methanogenesis activity showed that the biocover enhanced the rate of anaerobic digestion by 25% when compared with the control. The biocover-enhanced anaerobic digestion process was shown to represent an effective mechanism to counteract the accumulation of methanogenic substrates in the biocovered lagoon.  相似文献   

20.
The aim of this study was to examine the effects of replacement of phosphoric acid with nitric or acetic acid, and replacement of NaOH with KOH, as cleaning agents in dairy factories, on the effects that irrigation of dairy factory effluent (DFE) has on the soil–plant system. A 16-week greenhouse study was carried out in which the effects of addition of synthetic dairy factory effluent containing (a) milk residues alone or milk residues plus (b) H3PO4/NaOH, (c) H3PO4/HNO3/NaOH or (d) CH3COOH/KOH, on soil’s chemical, physical and microbial properties and perennial ryegrass growth and nutrient uptake were investigated. The cumulative effect of DFE addition was to increase exchangeable Na, K, Ca, Mg, exchangeable sodium percentage, microbial biomass C and N and basal respiration in the soil. Dry matter yields of ryegrass were increased by additions of DFE other than that containing CH3COOH. Plant uptake of P, Ca and Mg was in the same order as their inputs in DFE but for Na; inputs were an order of magnitude greater than plant uptake. Replacement of NaOH by KOH resulted in increased accumulation of exchangeable K. The effects of added NaOH and KOH on promoting breakdown of soil aggregates during wet sieving (and formation of a?<?0.25 mm size class) were similar. Replacement of H2PO4 by HNO3 is a viable but CH3COOH appears to have detrimental effects on plant growth. Replacement of NaOH by KOH lowers the likelihood of phytotoxic effects of Na, but K and Na have similar effects on disaggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号