首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experiments in a neutrally stable wind tunnel boundary layer were made for two-dimensional (quasi-line) sources of carbon dioxide dispersing over two types of uniformly spaced (billboard) surface roughness elements. Velocity and concentration measurements were made with each surface roughness over a wide range of source Richardson number by varying carbon dioxide release rate and wind speed. Concentration measurements were made with a FID gas analyzer using an ethane tracer in the source gas, and velocity measurements were made with independent LDV and HWA systems. For each surface roughness, this paper describes the wind tunnel boundary layer and presents alongwind and vertical concentration profiles in the gas plume. Vertical velocity and concentration profiles were measured at selected downwind distances, and the profiles were integrated to confirm the consistency of the measurements with the mass of carbon dioxide released. The data are intended for development of improved vertical turbulent entrainment correlations for use in dense gas dispersion models applied to hazardous chemical consequence analyses.  相似文献   

2.
A wind tunnel experiment was carried out to simulate stack gas diffusion within an unstable atmospheric boundary layer over a coastal region. The wind tunnel floor, 4 m leeward of the entrance of the test section, was heated to 90°C over a length of 6 m in the streamwise direction, and wind tunnel experiments were performed under the flat plate condition with a prototype-to-model length scale ratio of 1200. Three similarity criteria of flow fields in the wind tunnel and in atmosphere, viz., bulk Richardson number, surface Reynolds number and the ratio of the Peclet number to the Richardson number, were considered in the wind tunnel experiment. Tracer gas was released along the coastline at a height of 10 cm, which corresponded to 120 m in height in atmosphere. The obtained wind tunnel experimental results of ground level concentration were compared with 30-min average values of the field experiments, viz., the data from the Tokai 82 field experiment. The maximum ground level concentration and its location were accurately simulated when there was close similarity between the wind tunnel and atmospheric flow conditions. The maximum concentration increased and occurred closer to the source when the level of convection was relatively stronger in atmosphere.  相似文献   

3.
This wind-tunnel study has been conducted as part of a collaborative effort to investigate the effect of large surface roughness on the entrainment of air from a neutrally stable simulated atmospheric boundary layer into a continuous dense-gas plume. The present study examined the entrainment rates of dense-gas plumes as they were transported over two surfaces with similar geometry but significantly different roughness lengths (factor of 6). Extensive measurements of the flow and plume structures over a wide range of source Richardson numbers (Ri*) are reported. Carbon dioxide was released from a two-dimensional source in order to obtain a plume with virtually constant Ri*. Over the small roughness, the plume depths were generally large compared with the element heights, whereas over the large roughness, plume depths were comparable with the element heights. Retardation of mean velocities in the lower levels of the dense plumes (with compensating increases in the upper levels) was observed, as well as strong suppression of turbulence over quite large fractions of the boundary-layer depth. These effects increased as Ri* increased. Propagation of dense gas was observed upstream of the source due to gravity spreading. The flow within the plumes was observed to become laminar at the larger Ri*. The primary measurements comprised longitudinal surface concentration profiles. Where the plumes were fully turbulent, the plots of inverse concentration versus downwind distance formed reasonably straight lines. The sought-after entrainment velocities are proportional to the slopes of these lines and were found to diminish quite rapidly with Ri*. More in-depth analyses and intercomparisons with the results of the other laboratories are contained in a companion paper in this same volume (Briggs et al., 2001, Atmospheric Environment 35, 2265–2284).  相似文献   

4.
The 1995 Kit Fox dense gas field data set consists of 52 trials where short-duration CO2 gas releases were made at ground level over a rough surface during neutral to stable conditions. The experiments were intended to demonstrate the effects on dense gas clouds of relatively large roughnesses typical of industrial process plants. Fast response concentration observations were made by 80 samplers located on four downwind lines (25, 50, 100, and 225 m), including profile observations on three towers on each of the closest three arcs. Detailed meteorological measurements were made on several towers within and outside of the roughness arrays. The data analysis emphasized the variation of maximum concentration with surface roughness, the dependence of cloud advection speed on cloud depth, the variation of the three components of dispersion with ambient turbulence, and the dependence of vertical entrainment rate on ambient friction velocity and cloud Richardson number. The Kit Fox data were used to evaluate a specific dense gas dispersion model (HEGADAS 3+), with emphasis on whether it would be able to account for the increased roughness. The model was able to satisfactorily simulate the observed concentrations, with a mean bias of about 5% and with about 90% of the predictions within a factor of two of the observations.  相似文献   

5.
The characteristics of an unknown source of emissions in the atmosphere are identified using an Adaptive Evolutionary Strategy (AES) methodology based on ground concentration measurements and a Gaussian plume model. The AES methodology selects an initial set of source characteristics including position, size, mass emission rate, and wind direction, from which a forward dispersion simulation is performed. The error between the simulated concentrations from the tentative source and the observed ground measurements is calculated. Then the AES algorithm prescribes the next tentative set of source characteristics. The iteration proceeds towards minimum error, corresponding to convergence towards the real source.The proposed methodology was used to identify the source characteristics of 12 releases from the Prairie Grass field experiment of dispersion, two for each atmospheric stability class, ranging from very unstable to stable atmosphere. The AES algorithm was found to have advantages over a simple canonical ES and a Monte Carlo (MC) method which were used as benchmarks.  相似文献   

6.
7.
This paper provides a background for and an overview of the results of a comprehensive study of transport and dispersion of dense gas plumes over rough surfaces typical of industrial sites. The Petroleum Environmental Research Forum (PERF) 93-16 project involved model development and evaluations using observations from three wind tunnels and from the Kit Fox field experiment. Detailed discussions of the results of the research are given in the other papers in this special issue. The wind tunnel experiments produced data showing that the resulting best-fit vertical entrainment formula was close to (i.e., within about 30%) the vertical entrainment formulas already in use by current models, which were derived primarily from observations over smooth surfaces. Observations from the Kit Fox field experiment demonstrated the validity of the entrainment curves derived from the wind tunnel data. The Kit Fox data were also used to evaluate algorithms for along-wind dispersion and cloud advection speeds for short-duration releases typical of an industrial site, and to evaluate the HEGADAS dense gas dispersion model.  相似文献   

8.
Plume rise downwind of a large stationary gas turbine was measured in the field and the conditions were then scaled in the laboratory. For the laboratory, the plume exit conditions, wind velocity and temperature profiles, and wind direction were matched. It was found that for high temperature exhaust, the buoyancy is best matched by calculating a dimensionless density difference. With properly calculated buoyancy length scales, the plume trajectories were compared and were found to agree quite well. The probability distributions of the entrainment constant and the average values of the entrapment constant with downwind distance were compared. The field data showed about 15% greater plume rise. The median entrainment constant was about 10% greater for the lab test and the shape of the probability distribution matched very closely.  相似文献   

9.
Numerical simulation of smoke plumes from large oil fires   总被引:1,自引:0,他引:1  
A large eddy simulation (LES) model of smoke plumes generated by large outdoor pool fires is presented. The plume is described in terms of steady-state convective transport by a uniform ambient wind of heated gases and particulate matter introduced into a stably stratified atmosphere by a continuously burning fire. The Navier-Stokes equations in the Boussinesq approximation are solved numerically with a constant eddy viscosity representing dissipation on length scales below the resolution limits of the calculation. The effective Reynolds number is high enough to permit direct simulation of the large-scale mixing over two to three orders of magnitude in length scale. Particulate matter, or any non-reacting combustion ;product, is represented by Lagrangian particles which are advected by the fire-induced flow field. Background atmospheric motion is described in terms of the angular fluctuation of the prevailing wind, and represented by random perturbations to the mean particle paths. Results of the model are compared with two sets of field experiments.  相似文献   

10.
11.
The compact design of mechanical cooling towers necessitates that the plumes are issued into the cross-wind in close proximity. An improved understanding of the interaction of adjacent plumes is therefore required for better design of such cooling towers, which may lead to a reduction in their environmental impact. This paper presents the results of a numerical investigation into the interaction of two adjacent plumes in a cross-flow. The numerical model simulates small-scale wind tunnel experiments of a cooling tower arrangement. The computations are performed for three-dimensional, turbulent, buoyant and interacting plumes, and for a single plume for comparison. Two double-source arrangements, namely, tandem and side-by-side, with respect to the oncoming atmospheric boundary layer are considered. A low Reynolds number kε turbulence model is used with two discretisation schemes, hybrid and QUICK, and the results are compared. Comparisons are also made with the experimental results. The results show that the interaction of side-by-side plumes is dominated by the interaction of the rotating vortex pairs within the plumes. A tandem source arrangement leads to early merging and efficient rise enhancement. Comparisons of the predicted results with experimental data show good agreement for the plume rise.  相似文献   

12.
Accurately predicting the rise of a buoyant exhaust plume is difficult when there are large vertical variations in atmospheric stability or wind velocity. Such conditions are particularly common near shoreline power plants. Simple plume rise formulas, which employ only a mean temperature gradient and a mean wind speed, cannot be expected to adequately treat an atmosphere whose lapse rate and wind velocity vary markedly with height. This paper tests the accuracy of a plume rise model which is capable of treating complex atmospheric structure because it integrates along the plume trajectory. The model consists of a set of ordinary differential equations, derived from the fluid equations of motion, with an entralnment parameterization to specify the mixing of ambient air into the plume. Comparing model predictions of final plume rise to field observations yields a root mean square difference of 24 m, which is 9 % of the average plume rise of 267 m. These predictions are more accurate than predictions given by three simpler models which utilize variants of a standard plume rise formula, the most accurate of the simpler models having a 12% error.  相似文献   

13.
Measurements of the vertical entrainment velocity into two-dimensional dense gas plumes over fully rough surfaces were carried out as part of a co-operative research programme with wind tunnel facilities in the USA. This paper presents results obtained for neutral boundary layer conditions in the EnFlo wind tunnel at the University of Surrey; a companion paper treats the stable boundary layer case. Entrainment velocities, WE, were deduced from the streamwise development of the concentration field, non-dimensionalised with respect to the friction velocity in the undisturbed flow, u*, and correlated with the plume Richardson number, Ri*. Results for Richardson numbers in the range Ri*<15 were found to be well fitted by the empirical expression: WE/u*=0.65/(1+0.2Ri*). Flow visualisation studies showed layered plume structures with a sharp upper interface at higher Richardson numbers and in this regime turbulent motion below the interface became progressively more intermittent as Ri* increased. Measured turbulence levels collapsed within such high Richardson number plumes and flow and dispersion were significantly affected by molecular processes. Up-welling above the source was observed when the emission speed exceeded the approach flow friction velocity, though there was no clear evidence that this affected plume behaviour away from the immediate vicinity of the source.  相似文献   

14.
A new dispersion model for dense gas which is released into the atmosphere on the flat terrain is constructed within the Lagrangian framework. Using the hydrostatic assumption for pressure distribution within cloud due to density variation, slumping motion is successfully incorporated into the Lagrangian model with entrainment effect naturally considered. Turbulence suppression due to stable stratification within cloud is also taken into consideration in the model formulation. Various results including time variant and maximum concentration predictions by the proposed model are compared with the available measured data in the experiment conducted in Thorney Island in 1984 with good agreement.  相似文献   

15.
Disconnected bubbles or ganglia of trapped gas may occur below the top of the capillary fringe through a number of mechanisms. In the presence of dense non-aqueous phase liquid (DNAPL), the disconnected gas phase experiences mass transfer of dissolved gases, including volatile components from the DNAPL. The properties of the gas phase interface can also change. This work shows for the first time that when seed gas bubbles exist spontaneous gas phase growth can be expected to occur and can significantly affect water-gas-DNAPL distributions, fluid flow, and mass transfer. Source zone behaviour was observed in three different experiments performed in a 2-dimensional flow cell. In each case, a DNAPL pool was created in a zone of larger glass beads over smaller glass beads, which served as a capillary barrier. In one experiment effluent water samples were analyzed to determine the vertical concentration profile of the plume above the pool. The experiments effectively demonstrated a) a cycle of spontaneous gas phase expansion and vertical advective mobilization of gas bubbles and ganglia above the DNAPL source zone, b) DNAPL redistribution caused by gas phase growth and mobilization, and c) that these processes can significantly affect mass transport from a NAPL source zone.  相似文献   

16.
Measurements of the vertical entrainment velocity into two-dimensional dense gas plumes over fully rough surfaces were carried out as part of a co-operative research programme with wind tunnel facilities in the USA. This paper presents results obtained for stable boundary layer conditions in the EnFlo wind tunnel at the University of Surrey; a companion paper treats the neutral boundary layer case. Mean velocity and temperature, turbulent normal and shear tresses, temperature fluctuations and heat fluxes were measured and used to demonstrate that a moderately stable atmospheric boundary layer had been successfully simulated in the tunnel. Entrainment velocities, WE, were then deduced from the streamwise development of the concentration field, non-dimensionalised with respect to the friction velocity in the undisturbed flow, u*, and correlated with the plume Richardson number, Ri*. Higher non-dimensional entrainment speeds, WE/u*, were observed for Ri*>5 in the stable boundary layer than in the neutral boundary layer, the difference growing with increasing Richardson number. Emission velocity ratios, W0/u*, were however larger in the stable experiments, and exceeded one at about Ri*=18. Entrainment in the stable boundary layer appeared therefore to be more sensitive to emission velocity ratio than in the neutral case. Entrainment behaviour for Ri*⩽5 followed that found in the neutral boundary layer. In this regime, use of the neutral boundary layer entrainment speed correlation is unlikely to lead to the over-prediction of plume dilution rates in moderately stable boundary layers.  相似文献   

17.
If a power station plume significantly perturbs the levels of chemically active species in the atmosphere, then the rates of chemical reactions become non-uniform across the plume. This results in different effective plume widths for the different chemical species, which in turn influence the reaction rates. Here coupled equations are derived which for a reaction involving a single oxidant accurately model the total amount of a species in a plume and the associated plume width. The conventional box model slightly underestimates the amount of oxidized material produced. It is therefore suggested that the sensitivity of plume models to assumptions regarding lateral mixing should be tested, using the system of coupled equations derived in the paper.  相似文献   

18.
To protect passengers, personnel and equipment in a tunnel fire, it is important to understand and predict the movements of the hot-gas plume. To estimate the range of a fire plume propagating under the ceiling, a model is presented, that depends on two important parameters, i.e. the energy release rate of the fire and the velocity of the ventilation flow. The theoretical results, concerning the upwind range of the plume, agree favourably with experimental data obtained from eight tunnel fire tests. The theoretical value of the critical ventilation velocity, required to arrest the upwind movement of the fire-gas, agrees well with the corresponding experimental results for a wide range of energy release rates. The influences of air entrainment, friction at the ceiling and the associated heat loss are analysed and the results discussed.  相似文献   

19.
A simple form of a carbon-bond smog mechanism has been introduced into a complete set of plume conservation equations. The conservation expressions for mass, momentum, energy and component species have been solved numerically for typical source and neutral or adiabatic ambient conditions to simulate the homogeneous gas phase chemistry for approximately two hours of travel time downwind from the stack exit. The influence of stack exit conditions including the ratios of momentum-to-buoyancy length lm/lb, source-to-ambient velocity R and mixing-to-reaction time τ are demonstrated.It was found that homogeneous processes in the plume near-field do not significantly contribute to the overall conversion of SO2 to SO2−4. In the far-field maximum sulfate formation rates of 2.3% h−1 were predicted for clear summer noon hours, consistent with plume measurements. Variation of stack exit conditions were found to have little effect on the maximum SO2 conversion rate or the peak OH radical concentration where local HC/NOx ratios between 16 and 22 were predicted. Parameter changes resulting in greater ambient entrainment rates, however, were found to shift the development of the radical pool closer to the source and to significantly increase the total molar flux of plume sulfate.  相似文献   

20.
We present a plume rise model which can be applied to situations with arbitrary wind fields and source exit directions and to both dry and wet plumes. The model is an integral model which considers plume properties averaged over the plume cross section. It is validated by means of water tank, wind tunnel, and field experiments (stacks and cooling towers).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号