首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
超声与碱耦合方法破解污泥,可破坏污泥絮体结构,使污泥胞内外物质进入水相.本试验采用超声与碱耦合方法破解剩余污泥,研究污泥破解过程前后SCOD、pH值以及氨氮的变化.经超声与碱耦合预处理后,污泥上清液SCOD有大幅度提高.当加碱调节污泥pH为12,超声破解30 min后,污泥溶液SCOD溶出率从3.96%增加到27.88%.加碱后污泥经超声破解,其pH值有所下降,污泥溶液氨氮值会有所增加,但变化幅度不大.污泥温度随破解时间的延长而明显提高,这有利于后续污泥厌氧消化.  相似文献   

2.
采用热碱-EDTA耦合法进一步提升热碱法破解污泥的效果,以期减少碱量和热能的消耗。选用影响污泥破解效果的pH、温度和EDTA投加量等因素设计L16(45)的正交实验,在得出最佳污泥破解条件下,对比考察了热碱法和热碱-EDTA耦合法破解污泥的效果。结果表明,热碱-EDTA耦合法相比热碱破解法,破解后SCOD、TN、TP、多糖和蛋白质溶出量分别提高了14.7%、5.6%、9.9%、3.6%和25.9%,污泥残渣中VS的含量(21.93%)也小于热碱破解法(29.68%),破解液中分子质量小于400 Da的小分子物质占比(40.68%)大于热碱破解的对应结果(32.34%)。通过污泥粒径测定和SEM观察发现,热碱-EDTA耦合法破解的污泥粒径分布峰值响应小于热碱破解,污泥固体分散性优于热碱破解。通过分析可知,热碱-EDTA耦合法可以提高中低温条件下热碱破解的有机物溶出率和有机物水解性能,降低污泥残渣中VS的相对含量,热碱-EDTA耦合法相比热碱法强化了污泥的破解效果。  相似文献   

3.
对比研究了单独超声、单独碱解和两者联合预处理对污泥破解和厌氧消化性能的影响。以加碱量和输入能量为控制参数,研究了不同条件下的污泥破解和有机物溶解变化。结果表明:联合预处理技术对污泥破解和有机质溶解的效果比超声和碱解单独作用之和更好。污泥破解增加值ΔSCOD/TCOD和加碱量之间存在显著的线性关系(R2=0.936)。超声和碱解联合预处理对污泥厌氧消化产甲烷量较原泥增加了16.57%~31.13%。厌氧消化产甲烷结果表明,SCOD/TCOD的增加并不总是促进厌氧消化性能的改善,二者之间存在二次非线性关系(R2=0.85),且厌氧消化性能最高点出现在超声能量12 000 kJ·kg-1(TS)、加碱量0.08 g·g-1(TS)联合作用条件下。  相似文献   

4.
超声与碱预处理低有机质剩余污泥特性分析   总被引:2,自引:2,他引:0  
以某城市污水处理厂低有机质剩余污泥(VSS/SS为0.42)为对象,通过实验研究了超声与碱(NaOH和CaO)预处理对其特性的影响,分析了加碱和未加碱时污泥上清液中pH值、ORP(氧化还原电位)、SCOD、TP和NH3-N等随超声处理时间的变化规律。结果表明,在超声处理30~120 min范围内,超声加碱处理可使污泥上清液中ORP明显下降;超声加碱处理可明显提高污泥上清液中的SCOD释放量,且加NaOH比加CaO更为明显;NaOH加超声处理可促进污泥中TP的释放,但CaO加超声处理则与此相反;无论是否加碱,超声处理对污泥上清液中NH3-N释放影响较小;超声加碱处理剩余污泥可明显改善污泥絮体,使其更为紧密。  相似文献   

5.
超声破解污泥影响因素分析   总被引:2,自引:1,他引:2  
超声破解是促进污泥快速厌氧消化的一项新技术,不仅超声波参数直接影响污泥破解效果,而且污泥性质和辅助条件也影响污泥破解效果.以污泥溶解性化学需氧量增加值(SCOD )和污泥破解度(DDSCOD)为评价参数,通过超声破解不同性质污泥试验,得出污泥的初始温度、pH值和污泥浓度等参数对污泥破解效果起重要作用.增加搅拌和曝气辅助条件破解污泥的试验,得出间歇搅拌和曝气能增强污泥超声破解效果.  相似文献   

6.
以制药废水处理厂污泥为研究对象,采用超声波技术研究了污泥破解过程中污泥溶解性、沉降性、温度pH和粒径分布等变化情况,以及超声预处理对污泥后续厌氧消化的影响。研究结果表明,超声波能强化污泥的溶解性,在超声比能耗0到250000 kJ/kgTS范围内,污泥上清液的SCOD、TOC、TN和TP值均大幅增加,当比能耗相同时,高能短时的超声条件更利于污泥破解;污泥经超声波处理后,温度上升至40~52℃,pH值在6.9±0.2范围内有所波动,体积平均粒径削减58.75%~72.81%,污泥沉降比SV30由35%急剧升高至95%左右,使脱水性能变差。经ES 250000 kJ/kg TS的超声预处理,污泥厌氧消化的甲烷产量提高了36.81%,VS去除率由33.89%提高到53.11%,TCOD去除率由16.65%提高到89.23%,促进了污泥厌氧消化的产气效率和减量化效果。  相似文献   

7.
针对高铁酸盐在酸、碱性环境下氧化性和稳定性的不同,采用pH调至1、3、5、7、9、11、13的剩余污泥,投加高铁酸盐溶液进行研究,考察污泥脱水性能(污泥比阻)以及减量化效果,包括破解液性质(氨氮NH_4~+-N、总氮TN、正磷酸盐PO43-、总磷TP、总有机碳TOC、溶解性有机物SCOD、胞外聚合物EPS)和污泥性状(混合液挥发性悬浮固体浓度MLVSS、污泥沉降比SV、污泥体积指数SVI、粒径)。结果表明:pH由低到高,破解液中各类污染物浓度总体呈现出两端高中间低的趋势,高铁酸盐在酸性和碱性条件下的氧化效果均优于中性条件。其中,pH达13时减量化效果最佳,氮素和有机物质溶出最多,然而此时的脱水性能最差;pH为1时破解液中磷素最多,达90.6 mg·L~(-1)。当pH为13,每g污泥(干重)的高铁酸盐投加量为15 mg Fe时,1 g MLVSS的污泥SCOD释放量达1.13 g,TN、SCOD、TOC释放量分别为179.3、3 507.9和1 134.3 mg·L~(-1),在达到污泥减量化效果的同时更有利于破解液的后期资源化回收和处理。  相似文献   

8.
Fenton氧化破解剩余污泥的实验研究   总被引:6,自引:2,他引:4  
研究了利用Fenton氧化破解污泥,并以SCOD、TOC、TSS和VSS的变化来表征剩余污泥破解程度.结果表明:pH 2.0,H2O2和Fe2+投加量分别为9.0 g/L和0.8 g/L,反应时间1.5 h,反应温度60℃为Fenton氧化破解污泥的最佳反应条件.该条件下,TSS由8.14 g/L减少到5 g/L,TS...  相似文献   

9.
以生活污水处理厂污泥为研究对象,采用超声波技术进行污泥破解,研究不同声能密度和超声作用时间对污泥预处理效果的影响。结果表明,低声能密度超声波在120min内可破碎污泥絮体,分解细胞壁,使胞内有机物溶出;延长超声作用时间、增加声能密度均有助于污泥中有机物、氮、磷等物质的释放,当声能密度为0.10 W/mL、超声作用时间为120 min时,溶解性COD(SCOD)、可溶性蛋白质、可溶性多糖、TN、氨氮、TP、正磷酸盐的浓度较破解前分别提高了29.99、44.49、17.31、14.06、3.19、1.35、1.00倍;破解污泥释放出的氮以有机氮为主,磷的释放作用不明显。利用Pearson相关性分析得知,在声能密度变化条件下,除TP外,SCOD、可溶性蛋白质、可溶性多糖、TN、氨氮、正磷酸盐之间均呈极显著相关(p0.01);在超声作用时间变化条件下,各指标间均呈极显著相关(p0.01)。  相似文献   

10.
以低温热碱破解低有机质污泥,考察了不同热碱条件下低有机质污泥破解情况,通过DNA释放量分析了污泥细胞破解效果,同时,研究了污泥中磷形态分布与变化。结果表明,从污泥破解程度(DD)与DNA释放量来看,热碱联合可强化污泥破解,而pH比温度起更重要作用,尤其对污泥破解释磷起关键作用。高pH条件下,污泥中有机磷(OP)和非磷灰石无机磷(NAIP)以磷酸盐的形式大量溶解,而磷酸盐与钙离子反应导致磷灰石(AP)含量升高。研究认为,仅加碱pH=13即可有效破解低有机质污泥,操作简单,有利于污泥减量,且磷回收潜力大。  相似文献   

11.
Concentrations of different chlorinated compounds were measured in mussels incubated in two polluted watercourses, a river (the River Kymijoki) and a lake (Lake Vanaja) for four weeks in summer 1995. The sum concentrations of polychlorinated phenols (PCP) and biphenyls (PCB) were both about 1 μg/g lipid weight (lw) in Lake Vanaja mussels, while in the River Kymijoki mussels PCPs were non-detectable and PCBs were measured 120 ng/g lIw. The concentrations of toxic polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners ranged between <17 and 370 pg/g Iw in Lake Vanaja mussels and between <38 and 11,000 pg/g lw in the River Kymijoki mussels. Polychlorinated diphenyl ethers (PCDE) were detected in the mussels incubated in the River Kymijoki (0.4–1.1 ng/g Iw), but not in those incubated in Lake Vanaja. Polychlorinated phenoxyanisoles (PCPA) were measured 33 ng/g lw and polychlorinated phenoxyphenols (PCPP) 300 ng/g lw in the mussels incubated in the River Kymijoki. PCPAs were also detected in reference samples, which were sediment and pike from the River Kymijoki and Baltic salmon, seal and white-tailed sea eagle.  相似文献   

12.
Book review     
The Pesticide Manual ‐ A World Compendium, 8th Edition, C.R. Worthing, Editor and S.B. Walker, Assistant Editor, British Crop Protection Council, BCPC Publications Sales, Bear Farm, Binfield, Bracknell, Berkshire RG12 5QE, England. 1987, 1100 pp., UK £50; Overseas £56. ISBN 0–948404–01–9.  相似文献   

13.
Organochlorine compounds in a three-step terrestrial food chain   总被引:1,自引:0,他引:1  
The concentrations of 15 organochlorine chemicals (PCBs and pesticides) were studied in a Central European oak wood food chain system: Great tit (Parus major), caterpillars (Tortrix viridana, Operophtera brumata, Erannis defoliaria), and oak-leaves (Quercus robur). Juvenile tits receive organochlorines from the mother via egg transfer and, eventually to a greater extent, from the caterpillar food source during nestling period. The concentrations of PCB 153 (2,2′,4,4′,5,5′-hexachlorobiphenyl, the most abundant in this study) was found in leaf material at ca. 1 ng/g, in caterpillars 10 ng/g, and in bird eggs 170 ng/g on an average and on a dry mass basis.  相似文献   

14.
Abstract

The active ingredients in commercial formulations of malathion, oxamyl, carbaryl, diazinon, and chlorpyrifos diluted to “spray tank”; concentrations with buffered distilled or natural water of pH 4–9 were stable for at least 24 hr. Formulations of trichlorfon were not stable at pH 7 or above but disappearance rates were slower than for the pure chemical in homogeneous solution. Cupric ion was observed to be an effective catalyst for the hydrolysis of a variety of pure organophosphorus insecticides but did not catalyze hydrolysis of the active ingredients of the formulations examined. Increasing the dilution of the formulation increased the susceptibility of malathion, oxamyl, and carbaryl to hydrolysis.  相似文献   

15.
Abstract

The pH‐disappearance rate profiles were determined at ca. 25°C for 24 insecticides at 4 or 5 pH values over the range 4.5 to 8.0 in sterile phosphate buffers prepared in water‐ethanol (99: 1 v/v). Half‐lives measured at pH 8 were generally smaller than at lower pH values. Changes in half lives between pH 8.0 and 4.5 were largest (>1000x) for the aryl carbamates, carbofuran and carbaryl, the oxime carbamate, oxamyl, and the organophosphorus insecticide, trichlorfon. In contrast, half lives of phorate, terbufos, heptachlor, fensulfothion and aldicarb were affected only slightly by pH changes. Under the experimental conditions described half lives at pH8 varied from 1–2 days for trichlorfon and oxamyl to >1 year for fensulfothion and cyper‐methrin. Insecticide persistence on alumina (acid, neutral and basic), mineral soils amended with aluminum sulfate or calcium hydroxide to different pH values and four natural soils of different pH was examined. No correlation was observed between the measured pH of these solids and the rate of disappearance of selected insecticides applied to them. These observations demonstrate the difficulty of extrapolating the pH dependent disappearance behaviour observed in homogeneous solution to partially solid heterogeneous systems such as soil.  相似文献   

16.
Abstract

One of the dominant tree species growing within and around the eastern portion of Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis). Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food—the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of 3H, 137Cs, 90Sr, totU, 238Pu, 239, 240Pu, and241 Am in soils (0‐ to 12‐in. [31 cm] depth underneath the tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (3) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of 3H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN from LANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 μSv); this is far below the International Commission on Radiological Protection (all pathway) permissible dose limit of 100 mrem (1000 μSv). Soil‐to‐nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables.  相似文献   

17.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg?1 degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg?1 application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to > 70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of 14C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative 14CO2 was less than 1.5% of applied 14C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   

18.
The ability of two biodegradable surfactants, polyoxyethylene (20) sorbitan monooleate (Tween 80) and sodium dihexyl sulfosuccinate (Aerosol MA), to recover a representative dense non-aqueous-phase liquid (DNAPL), trichloroethene (TCE), from heterogeneous porous media was evaluated through a combination of batch and aquifer cell experiments. An aqueous solution containing 3.3% Aerosol MA, 8% 2-propanol and 6 g/l CaCl(2) yielded a weight solubilization ratio (WSR) of 1.21 g TCE/g surfactant, with a corresponding liquid-liquid interfacial tension (IFT) of 0.19 dyn/cm. Flushing of aquifer cells containing a TCE-DNAPL source zone with approximately two pore volumes of the AMA formulation resulted in substantial (>30%) mobilization of TCE-DNAPL. However, a TCE mass recovery of 81% was achieved when the aqueous-phase flow rate was sufficient to displace the mobile TCE-DNAPL toward the effluent well. Aqueous solutions of Tween 80 exhibited a greater capacity to solubilize TCE (WSR=1.74 g TCE/g surfactant) and exerted markedly less reduction in IFT (10.4 dyn/cm). These data contradict an accepted empirical correlation used to estimate IFT values from solubilization capacity, and indicate a unique capacity of T80 to form concentrated TCE emulsions. Flushing of aquifer cells with less than 2.5 pore volumes of a 4% T80 solution achieved TCE mass recoveries ranging from 66 to 85%, with only slight TCE-DNAPL mobilization (<5%) occurring when the total trapping number exceeded 2 x 10(-5). These findings demonstrate the ability of Tween 80 and Aerosol MA solutions to efficiently recover TCE from a heterogeneous DNAPL source zone, and the utility of the total trapping number as a design parameter for a priori prediction of DNAPL mobilization and bank angle formation when flushing with low-IFT solutions. Given their potential to stimulate microbial reductive dechlorination at low concentrations, these surfactants are well-suited for remedial action plans that couple aggressive mass removal followed by enhanced bioremediation to treat chlorinated solvent source zones.  相似文献   

19.
Abstract

Five organophosphorous insecticides: Leptophos, EPN, Cyano‐fenphos, trichloronate and salithion proved to cause irreversible ataxia not only to chicken but also to mice and sheep. TOCP was included as a reference. Cyanofenphos blocked the catecholamine B‐receptor binding activity with 3H‐norepinephrine at a level similar to that of the specific inhibitor propranolol in the mouse heart preparation. In the lamb heart preparation, the B‐receptor was more sensitive to Leptophos, salithion and TOCP than to propranolol. The six compounds and their oxons were screened for their in‐vitro inhibition to monamine oxidase (MAO), acetyl cholinesterase (AChE) and neurotoxic esterase (NTE) in the brain of either mouse, lamb or chicken. It is believed that their AChE inhibition stands for their acute toxicity, while NTE inhibition is responsible for their paralytic ataxia.  相似文献   

20.
Background, Aims and Scope The global problem concerning contamination of the environment as a consequence of human activities is increasing. Most of the environmental contaminants are chemical by-products and heavy metals such as lead (Pb). Lead released into the environment makes its way into the air, soil and water. Lead contributes to a variety of health effects such as decline in mental, cognitive and physical health of the individual. An alternative way of reducing Pb concentration from the soil is through phytoremediation. Phytoremediation is an alternative method that uses plants to clean up a contaminated area. The objectives of this study were: (1) to determine the survival rate and vegetative characteristics of three grass species such as vetivergrass, cogongrass and carabaograss grown in soils with different Pb levels; and (2) to determine and compare the ability of the three grass species as potential phytoremediators in terms of Pb accumulation by plants. Methods The three test plants: vetivergrass (Vetiveria zizanioides L.); cogongrass (Imperata cylindrica L.); and carabaograss (Paspalum conjugatum L.) were grown in individual plastic bags containing soils with 75 mg kg−1 (37.5 kg ha−1) and 150 mg kg−1 (75 kg ha−1) of Pb, respectively. The Pb contents of the test plants and the soil were analyzed before and after experimental treatments using an atomic absorption spectrophotometer. This study was laid out following a 3 × 2 factorial experiment in a completely randomized design. Results On the vegetative characteristics of the test plants, vetivergrass registered the highest whole plant dry matter weight (33.85–39.39 Mg ha−1). Carabaograss had the lowest herbage mass production of 4.12 Mg ha−1 and 5.72 Mg ha−1 from soils added with 75 and 150 mg Pb kg−1, respectively. Vetivergrass also had the highest percent plant survival which meant it best tolerated the Pb contamination in soils. Vetivergrass registered the highest rate of Pb absorption (10.16 ± 2.81 mg kg−1). This was followed by cogongrass (2.34 ± 0.52 mg kg−1) and carabaograss with a mean Pb level of 0.49 ± 0.56 mg kg−1. Levels of Pb among the three grasses (shoots + roots) did not vary significantly with the amount of Pb added (75 and 150 mg kg−1) to the soil. Discussion Vetivergrass yielded the highest biomass; it also has the greatest amount of Pb absorbed (roots + shoots). This can be attributed to the highly extensive root system of vetivergrass with the presence of an enormous amount of root hairs. Extensive root system denotes more contact to nutrients in soils, therefore more likelihood of nutrient absorption and Pb uptake. The efficiency of plants as phytoremediators could be correlated with the plants’ total biomass. This implies that the higher the biomass, the greater the Pb uptake. Plants characteristically exhibit remarkable capacity to absorb what they need and exclude what they do not need. Some plants utilize exclusion mechanisms, where there is a reduced uptake by the roots or a restricted transport of the metals from root to shoots. Combination of high metal accumulation and high biomass production results in the most metal removal from the soil. Conclusions The present study indicated that vetivergrass possessed many beneficial characteristics to uptake Pb from contaminated soil. It was the most tolerant and could grow in soil contaminated with high Pb concentration. Cogongrass and carabaograss are also potential phytoremediators since they can absorb small amount of Pb in soils, although cogongrass is more tolerant to Pb-contaminated soil compared with carabaograss. The important implication of our findings is that vetivergrass can be used for phytoextraction on sites contaminated with high levels of heavy metals; particularly Pb. Recommendations and Perspectives High levels of Pb in localized areas are still a concern especially in urban areas with high levels of traffic, near Pb smelters, battery plants, or industrial facilities that burn fuel ending up in water and soils. The grasses used in the study, and particularly vetivergrass, can be used to phytoremediate urban soil with various contaminations by planting these grasses in lawns and public parks. ESS-Submission Editor: Dr. Willie Peijnenburg (wjgm.peijnenburg@rivm.nl)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号