首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
长江下游支流水体中多环芳烃的分布及生态风险评估   总被引:5,自引:4,他引:1  
长江下游地区是我国一个典型的化学工业园区聚集地,化工园区企业生产过程中产生和排放的多环芳烃通过大气沉降、地表径流等方式进入支流水体,并最终汇入长江.本研究选择了典型的支流水体,开展了多环芳烃的分布特征、源解析和生态风险评估研究.结果表明多环芳烃单体以低环为主,总浓度为37.27~285.88 ng·L-1,平均值为78.31 ng·L-1.PAHs单体浓度范围0~61.35 ng·L-1,检出率最低单体为苯并[k]荧蒽和苯并[a]芘,其检出率均为75%.苯并[a]芘是毒性当量因子最大的PAHs,其浓度范围为0~11.08 ng·L-1.根据我国《生活饮用水水源水质标准》(CJ 3020-1993)规定,饮用水中苯并[a]芘的限值为10 ng·L-1,其中研究区域内无锡市的一个水样(S12)中浓度超出了标准限值,长江下游支流水体的PAHs浓度总体处于低至中等的污染水平.根据比值法和主成分分析的源解析结果,水体中多环芳烃主要受化工排放、汽车尾气的影响,还有部分来自燃煤.生态风险评估...  相似文献   

2.
吴喜军  董颖  赵健  刘静  张亚宁 《环境科学》2023,44(4):2040-2051
为研究陕北矿区内典型河流窟野河水体中多环芳烃(PAHs)的赋存水平、空间分布、来源和生态风险,采用高效液相色谱-二极管阵列检测器串联荧光检测器法,对研究区水体中59个采样点的16种PAHs进行了定量检测分析.结果表明,窟野河水体中■范围为50.06~278.16 ng·L-1,平均值为128.22 ng·L-1;单体浓度范围为0~121.22 ng·L-1,其中■的检出浓度最高,平均值为36.58 ng·L-1,其次是苯并[a]蒽和菲;各单体检出率均在70%以上,12种单体的检出率为100%; 59个采样点中4环PAHs的相对丰度较大,占比范围为38.59%~70.85%;各采样点间浓度差异显著,浓度高值点主要集中在矿业活动工业区和人口密集区;与国内外其它河流相比,窟野河水体中PAHs浓度处于中等水平.运用正定矩阵因子分解法(PMF),结合特征比值法,对PAHs的来源种类与来源贡献进行了定量分析,表明窟野河中上游工业区水体中PAHs主要来源于焦化和石油类物质排放(34.67%)、煤炭燃烧(30.62...  相似文献   

3.
多环芳烃是水环境中普遍存在的有害污染物,了解多环芳烃的污染特征与风险水平对饮用水源地的可持续发展及饮水安全具有重要意义.为此,采用固相萃取-气相色谱-质谱定性定量分析法对内蒙古东北部地区的满洲里和新右旗饮用水源33个(包含22个地下水和11个地表水)采样点中多环芳烃的残留进行了测定,分析了多环芳烃的污染水平并进行了健康和生态风险评估.结果表明,研究区域饮用水源水体33个采样点均有PAHs检出,除苯并[k]荧蒽、苯并[a]芘和二苯并[a, h]蒽这3种单体检出率范围为36.36%~95.45%外,其余13种PAHs单体检出率均为100%.■检出范围为42.76~164.50 ng·L-1,平均值为90.82 ng·L-1,其中地表水和地下水中■检出范围分别为66.39~164.50 ng·L-1和42.76~147.70 ng·L-1.检出的PAHs单体ρ(萘)最大,平均值达36.91 ng·L-1,ρ(蒽)最小,仅为0.81 ng·L-1,其中地下水与地表...  相似文献   

4.
为研究焦化厂地下水中美国EPA优先控制的16种多环芳烃(PAHs)的分布特点和污染来源,本研究联合使用统计技术、正定矩阵因子分析(PMF)模型和风险商值法,深入分析了焦化厂地下水中PAHs的分布规律,定量解析了PAHs的污染来源,并且对其生态风险进行了科学评价.结果表明,焦化厂地下水中16种PAHs的总检出率较高,达到46.7%.地下水中∑16PAHs的浓度范围是n.d.~444.9μg·L-1,均值为1.88μg·L-1.不同生产车间地下水中PAHs的浓度存在明显差异,其中污染最重的车间位于焦油精制区,地下水中∑16PAHs的浓度为444.92μg·L-1.应用PMF源解析模型,识别出该焦化厂地下水中PAHs有二类污染源:一是石油的燃烧源,二是煤和生物质燃烧以及石油类的泄漏,二种污染源对焦化厂地下水中PAHs的贡献率分别为38.6%和61.4%.焦化厂地下水中∑16PAHs处在高生态风险等级,且有53.4%的地下水采样点单体PAHs的生态风险处在高风险等...  相似文献   

5.
多环芳烃(Polycyclic aromatic hydrocarbons,PAHs)具有“三致”效应,其在环境中的污染特征及行为倍受关注.长江作为我国经济发展的重要纽带,其PAHs污染特征及来源亟需明晰.本研究以长江干流(攀枝花至南京)及主要支流为研究区域,分析了表层沉积物中19种PAHs的污染特征和来源,评估了PAHs类污染物的生态风险.结果表明,长江上游、中下游及主要支流江段沉积物中Σ19PAHs浓度分别为55.2~406.4ng·g-1(均值(216.3±139.2) ng·g-1)、48.0~500.4 ng·g-1(均值(337.1±197.0) ng·g-1)、90.1~429.8 ng·g-1(均值(268.0±129.0) ng·g-1).其中4环、5~6环类PAHs浓度范围分别占38.9%和39.9%.以三峡大坝为界,上游越靠近大坝沉积物中PAHs浓度越高,中下游越靠近长江口沉积物中PAHs浓度越高;近20年来长江干流沉积物中PAHs浓...  相似文献   

6.
城市交通干道降雨径流中PAHs的污染特征   总被引:3,自引:0,他引:3  
以上海、温州市典型交通干道地表径流为研究对象,分析了样品中16种溶解态和颗粒态PAHs浓度,了解了城市交通干道降雨径流中PAHs污染特征及其动态变化过程.结果表明,径流中∑PAHs(包括溶解相、颗粒相)浓度范围为919.8~16711.6ng·L-1,溶解相中PAHs浓度要远低于颗粒相(分别为4.9~1558.0ng·L-1,635.4~16624.0ng·L-1).通过对3场降雨事件中PAHs浓度随降雨过程变化的研究,可以发现并不是所有道路径流都有初期冲刷效应,初期冲刷的产生受雨前干期、降雨强度以及径流量等因素共同作用,因此简单拦截初期径流并不能十分有效地降低PAHs污染负荷.径流中PAHs在颗粒相-水相间的分配系数Kp值为2.3×104~2.5×106L·kg-1,随着悬浮颗粒物含量增加而减少,这可能跟径流过程中颗粒物粒径组成有关.  相似文献   

7.
有机磷酸酯(organophosphate esters, OPEs)在环境中普遍存在,对生态系统和人体健康构成潜在的风险.在优化固相萃取(SPE)前处理方法的基上,建立了超高效液相色谱-质谱联用(UPLC-MS/MS)测定水体中8种OPEs的检测方法.实验对比了不同SPE小柱、不同洗脱液和不同洗脱液体积对8种目标化合物的回收率.结果发现,使用ENVI-18柱富集OPEs,用8 mL含25%(体积分数)二氯甲烷的乙腈洗脱,目标化合物加标回收率在92.5%~102.2%.不同基质样品加标回收率为88.5%~116.1%,RSD为1.7%~9.9%.对北京某污水处理厂不同工艺和污水受纳河流水体上下游连续6 d取样检测,污水厂出水中OPEs的浓度范围为85.9~235.4 ng·L-1,受纳河流下游的6 d OPEs平均浓度为130.3 ng·L-1,高于上游来水中浓度(119.4 ng·L-1),但低于污水处理厂出水平均总浓度(162.5 ng·L-1).结果表明,污水处理厂不能完全去除OPEs,对磷酸...  相似文献   

8.
太湖水体中NSAIDs的时空分布规律和生态风险评价   总被引:1,自引:0,他引:1  
廉杰  李祎飞  王晓暄  叶彬  邹华  史红星 《环境科学》2020,41(5):2229-2238
非甾体类消炎药(non-steroidal anti-inflammatory drugs, NSAIDs)是太湖水体中检出频率较高的一类药物残留物,但目前尚无研究从整个时空角度报道多种典型NSAIDs混合物在太湖的赋存情况.为此,采用高效液相色谱串联质谱(HPLC-MS/MS)技术检测了全太湖19个断面5种典型NSAIDs(双氯芬酸、布洛芬、吲哚美辛、萘普生和酮洛芬)的赋存浓度,分析了NSAIDs的时空分布规律及其与环境因子的相关性,并应用混合风险熵值(mixture risk quotient, MRQ)模型初步评估了NSAIDs混合物的生态风险.结果表明,相比于太湖中部,太湖北部、西部和东部水体的NSAIDs混合物赋存浓度较高,酮洛芬是NSAIDs混合物污染的主要贡献者;太湖水体中NSAIDs混合物在夏季(15.9~134.3 ng·L-1)和秋季(16.4~144.6 ng·L-1)的赋存浓度较高,而在春季(25.3~72.5 ng·L-1)和冬季(14.6~57.4 ng·L-1)的赋存浓...  相似文献   

9.
叶凯  孙玉川  贾亚男  朱琳跃  徐昕 《环境科学》2020,41(12):5448-5457
采用气相色谱-微池电子捕获检测器(GC-μECD)测定南山老龙洞岩溶地下水水体中有机氯农药(OCPs)和多氯联苯(PCBs)残留量,并探究了OCPs和PCBs的浓度、分布和来源等残留特征.结果表明,OCPs总浓度范围为34.8~623.2 ng·L-1,均值为215.6 ng·L-1,其中,HCHs、DDTs和其它类OCPs总浓度范围分别为8.2~23.6、4.5~363.7和22.2~235.9 ng·L-1,均值分别为15.9、104.5和95.3 ng·L-1; PCBs总浓度范围为6.0~40.7 ng·L-1,均值为16.8 ng·L-1.总体而言,OCPs和PCBs污染处于中上水平;多重比较结果显示部分OCPs和PCBs平均浓度具有统计学意义上的显著差异.研究区各采样点水体中污染水平差异较大,但OCPs和PCBs的季节分布相对均匀.源解析表明,HCHs源于周围环境中林丹的输入; DDTs源于近期工业DDT的非法使用;其它类OCPs源于大气沉降和...  相似文献   

10.
多环芳烃在珠江口表层水体中的分布与分配   总被引:14,自引:9,他引:14  
为了解河口海岸带水体中多环芳烃(PAHs)的时空分布及其在水体及颗粒相中的分配及其控制因素,于2003年4月(春季)和2002年7月(夏季)采集了珠江河口及近海表层水体,采用GC-MS分析了水体中PAHs.结果表明,珠江河口及近海表层水体中多环芳烃浓度春季(颗粒相:4.0~39.1 ng/L;溶解相:15.9~182.4 ng/L)高于夏季(颗粒相:2.6~26.6 ng/L,溶解相:13.0~28.3 ng/L).河流径流、悬浮颗粒物含量及光降解程度是控制水体PAHs浓度的主要因素.水体中以3环PAHs为主,伶仃洋内样品比珠江口外样品相对富集5,6环PAHs,夏季样品较春季样品相对富集3环PAHs.颗粒物的来源和组成是造成这种差别的主要原因.PAHs在颗粒相及水相中的分配系数(Kp)随颗粒有机碳含量、水体盐度增加而增加,随悬浮颗粒物含量增加而减少.有机碳归一化分配系数(1gKdc)与辛醇/水分配系数(1gKow)间存在明显的线性关系,但高于线性自由能关系模拟值.  相似文献   

11.
为研究承德市PM2.5中多环芳烃(PAHs)的季度变化特征和污染来源,于2019年的1、 4、 7和10月采集PM2.5样品,采用气相色谱-质谱联用仪(GC-MS)测定了16种PAHs的浓度,并利用时序变动、特征比值和正定矩阵因子模型(PMF)的方法,分析了各季节PAHs的浓度变动、组分特征和潜在污染源.此外,为评价PAHs对健康风险的影响,采用BaP毒性当量法(BaPTeq)及增量终生致癌风险(ILCR)模型,并结合PAHs数据和PMF结果进行分析.结果表明,采样期间承德市PM2.5中■的变化范围为2.7~246.4 ng·m-3,呈现(136.8±52.1)ng·m-3(冬季)>(70.3±36.7)ng·m-3(秋季)>(24.7±17.4)ng·m-3(春季)>(13.7±9.4)ng·m-3(夏季)的显著季节特征.不同环数PAHs的浓度占总浓度的占比中,5~6环的...  相似文献   

12.
王成龙  邹欣庆  赵一飞  李宝杰 《环境科学》2016,37(10):3789-3797
为研究长江流域水体中多环芳烃(PAHs)污染特征和生态风险,于2015年8月采集了长江干流及主要支流水体样品19个.使用固相萃取方法提取PAHs,经净化后,利用气相色谱-质谱联用仪测定了16种优先控制PAHs(ΣPAHs)的浓度.结果表明,水体中ΣPAHs浓度范围为17.7~110 ng·L-1,平均浓度为42.6 ng·L-1.水体中PAHs主要以低环为主(2~3环),占水体ΣPAHs总量的67.7%.同分异构体比值法表明,研究区PAHs主要来自于化石燃料和木材等生物质燃料燃烧的产物以及石油类物质泄漏和化石燃料燃烧混合产物.正定矩阵因子分解法(PMF)结果表明,研究区PAHs主要有4种来源,依次为:生物质和煤炭燃烧混合源40.1%,石油源19.6%,交通源17.5%,焦炭源22.8%.生态风险评价结果表明,低环PAHs的生态风险处于较高水平,各采样点风险熵值表明,乌江站及下游区域生态风险较高,但总体看来,长江流域总体生态风险处于较低水平.  相似文献   

13.
巢湖水体和水产品中多环芳烃的含量与健康风险   总被引:11,自引:1,他引:10  
利用GC-MS测定了巢湖水体15个样品及9种主要水产品中16种优控多环芳烃(PAHs)的含量,并用美国环保局(USEPA)推荐的健康风险评价模型估算了巢湖地区居民由于饮水、洗澡及食用水产品造成的PAHs暴露量.在此基础上,利用概率风险评价和蒙特卡罗模拟方法分析了巢湖水体与水产品中PAHs的健康风险及其不确定性.研究结果表明,巢湖水体中16种优控PAHs总含量(PAH16)范围为95.63~370.13ng·L-1,平均为(170.72 ±70.79) ng·L-1,BaP当量浓度(Bapeq)为(1.43±0.79) ng·L-1;水产品中PAH16的干重含量范围为129.33 ~575.31 ng·g-1,均值为(320.93±147.50) ng·g-1,BaP当量浓度为(4.67±6.68) ng·g-1.巢湖地区居民由于饮水和洗浴造成的PAH16暴露量分别为(5.76±2.39)×10-3 ng·kg-1·d-1和(25.08±10.40)×10-3 ng·kg-1·d-1,城镇与农村居民食用水产品造成的PAH16暴露量分别为(190.86±84.17) ng· kg-1· d-1和(75.88±33.47) ng·kg-1·d-1;水产品食用是巢湖地区居民PAHs暴露的主要途径.洗浴和饮水造成的PAH16暴露风险分别为(6.33±4.70)×10-9 a-1和(4.32±2.47) ×10-7 a-1,城镇与农村居民食用水产品造成的PAH16暴露风险分别为(3.17±3.79)×10-5 a-1和(1.25±1.50) ×10-5 a-1;居民食用水产的PAH16暴露风险高于USEPA建议的可接受风险(1.0×10-6 a-1),存在一定的致癌风险.水产品食用风险的不确定度较高,Bap当量浓度是影响风险评估不确定性的主要因素.  相似文献   

14.
曝气-电解生态浮床的净化效果与机理分析   总被引:1,自引:0,他引:1  
为强化生态浮床对重污染河道水体的净化能力,采用曝气-电解生态浮床联合技术增强生态浮床的净化功能.试验考察了电流密度、曝气量和处理时间对模拟的高氮磷重污染水体的净化潜力,分析了电解反应对填料细菌群落结构组成和浮床水生植物黄菖蒲(Iris pseudacorus)生长的影响.结果表明:在进水NH3-N浓度为10 mg·L-1,PO43-浓度为0.8 mg·L-1,电流密度为0.74 mA·cm-2,水力停留时间为3 d的条件下,相比于电解生态浮床和传统的生态浮床,曝气-电解生态浮床有利于水体中NH3-N的去除(p<0.001),其NH3-N浓度下降至(0.92±0.24) mg·L-1,而电解生态浮床处理的水体NH3-N浓度为(6.85±0.17) mg·L-1,传统生态浮床处理水体中NH3-N浓度高达(8.09±0.40)...  相似文献   

15.
为探究长江南京段水源水中有机磷酸酯(organophosphate esters,OPEs)的污染特征、时空分布、生态风险和健康风险,利用固相萃取-高效液相色谱-串联质谱法测定了13种OPEs.结果表明,除磷酸三(2,3-二溴丙基)酯外,其余12种OPEs均有不同程度的检出,总浓度范围为85. 21~1 557. 96 ng·L-1,氯代烷基磷酸酯是主要化合物,其中检出浓度最高的是磷酸三(2-氯乙基)酯[tri(2-chloroethyl) phosphate,TCEP],高达447. 08 ng·L-1.长江南京段水源水中OPEs呈现明显的季节变化特征,夏季总检出浓度为220~1557. 96 ng·L-1,平均浓度是493. 78 ng·L-1,是春秋季的1. 7~2. 6倍.生态风险评估显示磷酸三甲苯酯和2-乙基己基二苯基磷酸酯对有机体(藻类,甲壳类动物和鱼类)具有中或高等风险.高暴露浓度下,OPEs的总非致癌风险为4. 41×10-3~2. 91×10-2  相似文献   

16.
松花江流域冰封期水体中多环芳烃的污染特征研究   总被引:3,自引:4,他引:3  
在松花江流域的3个主要江段:嫩江、第二松花江和松花江干流,于2010年冰封期采集了21个水体样品,分析了多环芳烃的污染特征.结果表明,15种PAHs的浓度范围为23.4~85.1 ng·L-1,平均浓度为(50.3±17)ng·L-1,与我国其它地区地表水中PAHs的污染程度相当.松花江流域水体中PAHs具有明显的空间分布特征,城市下游浓度高于上游,说明沿岸城市的污水排放可能是松花江水体中PAHs的主要污染源,主成分分析表明,PAHs的主要来源是化石燃料的燃烧源.商值法生态风险评价结果显示,相对分子质量高的PAHs造成的生态风险可以忽略,相对分子质量低的PAHs对松花江水体会造成一定的危害.  相似文献   

17.
莲花水库水体中抗生素污染特征及生态风险评价   总被引:7,自引:7,他引:0  
采用固相萃取-高效液相色谱串联质谱法对厦门市新建饮用水源地莲花水库中4类(四环素类、喹诺酮类、大环内酯类和磺胺类)13种典型抗生素进行了检测,并评价了其污染特征和生态风险等级.结果表明,除红霉素、磺胺二甲嘧啶和磺胺甲■唑外,其余10种抗生素均有不同程度检出,总浓度范围为n.d.~925.26 ng·L-1.其中阿奇霉素的浓度最高(n.d.~232.61 ng·L-1),检出率为75%;其次为恩诺沙星(n.d.~187.69ng·L-1)、四环素(n.d.~155.05 ng·L-1)和环丙沙星(n.d.~83.66 ng·L-1),检出率均超过60%.抗生素浓度随采样点呈现出上游莲花溪S1>澳溪支流S2>库区下游S3>入库口S4>库区中心S5的趋势.抗生素季节分布特征较为明显,枯水期总浓度明显高于丰水期和平水期.生态环境风险评价表明氧氟沙星、恩诺沙星和环丙沙星的生态环境风险较高,环丙沙星为主要风险因子;枯水期的抗生素联合风险商值比丰水期和平水期高,且大于...  相似文献   

18.
多环芳烃在西江高要段水体中的分布与分配   总被引:5,自引:2,他引:3  
邓红梅  陈永亨  常向阳 《环境科学》2009,30(11):3276-3282
为了解西江流域水体中多环芳烃(PAHs)的深度和季节分布及其在溶解相和颗粒相的分配以及控制因素,分别在洪水期(2003年8月和2004年7月)和枯水期(2003年11月和2004年3月)采集了西江高要段水柱.结果表明,溶解相和颗粒相中PAHs的浓度分别为21.7~138 ng/L和40.9~664.8μg/kg;水体中PAHs的总含量(颗粒相及溶解相),洪水期大于枯水期.在溶解相中,PAHs的浓度随深度无明显规律;而在颗粒物中,PAHs的浓度都表现出相同的变化趋势,即中层水PAHs含量最高,表层水PAHs含量最低.溶解相和颗粒相中PAHs的浓度都随悬浮颗粒物的含量增加而增加.从PAHs组成特点来看,溶解相以3环的PAHs为主,而颗粒相以3~4环的PAHs为主.PAHs在颗粒相及溶解相中的分配系数(KP)不受颗粒有机碳浓度控制(R2为0.000 1~0.2),而受颗粒物浓度、及溶解有机碳浓度的共同影响(R2为0.15~0.36),尤其是溶解态的细小碳黑有机质的影响.西江高要段水体PAHs在不同季节的lgKOC值大部分超过经典平衡分配模型的上限.除了2003年11月(R2为0.000 4~0.12,p0.001)之外,其它3个季节PAHs的lgKOC与lgKOW均有较强的相关性(R2为0.29~0.91,p0.05).洪水期颗粒物的亲脂性强于枯水期.  相似文献   

19.
李凌云  高礼  郑兰香  李富娟  陶红  马兰 《环境科学》2023,44(5):2539-2550
利用固相萃取-超高效液相色谱质谱联用仪检测分析了9种典型内分泌干扰物(EDCs)在宁夏入黄排水沟中的污染水平,探讨了其空间分布特征,分析了其来源,并进行了风险评价.结果表明,宁夏入黄排水沟中33个采样点均有EDCs检出,各采样点∑EDCs浓度范围在82.28~1 730.09 ng·L-1之间.其中,检出浓度最高的两种化合物是E2和OP,浓度最大值分别为1 367.41 ng·L-1和787.80 ng·L-1.酚类化合物中双酚A(BPA)和壬基酚(NP)的检出率均达到90%以上,雌激素类化合物中雌酮(E1)和雌三醇(E3)的检出率较高,均为79%.空间分布上,排水沟中∑EDCs浓度平均值呈现出石嘴山市和银川市远高于吴忠市和中卫市的分布特征,入黄口采样点∑EDCs浓度范围为82.28~979.82 ng·L-1.来源分析显示,宁夏入黄排水沟中BPA主要来自于工业废水和生活污水,OP主要来源于工业废水,E1主要来自于畜禽养殖废水,E3主要来源于生活污水.风险评价结果表明,入黄排水沟中EDCs的生态风险...  相似文献   

20.
随着城市化和工业化进程加速,城市土壤多环芳烃(PAHs)含量及污染状况受到广泛关注.以石嘴山市为例,分析8个城市功能区156个表层土壤(0~20 cm)样品PAHs含量的空间分布特征,运用单因子指数、内梅罗综合指数和终生癌症风险增量模型评价土壤PAHs污染状况,利用正定矩阵因子分解模型(PMF)对PAHs来源进行解析.结果表明,石嘴山市表层土壤PAHs总含量均值为489.82 ng·g-1,除芘(Pyr)外的15种PAH单体变异系数均大于100%,属强变异;不同功能区土壤PAHs含量呈现出:交通区(1 217.61 ng·g-1)>工业区(809.58 ng·g-1)>公园(273.66 ng·g-1)>文教区(268.18 ng·g-1)>商业区(240.05 ng·g-1)>农业区(226.81 ng·g-1)>医疗区(211.90 ng·g-1)>居民区(183.4...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号