首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
冬季南京城市大气气溶胶吸湿性观测研究   总被引:2,自引:0,他引:2  
气溶胶吸湿性不仅影响颗粒物非均相化学反应过程和大气能见度,且对云凝结核形成起决定性作用.本研究运用加湿串联拆分迁移分析仪(H-TDMA)对冬季南京城市大气气溶胶吸湿性进行外场观测研究.结果表明:吸湿增长因子概率分布函数(GF-PDF)呈双峰分布,峰值分别为1.000±0.010(弱吸湿峰)和1.400±0.035(强吸湿峰);在85%相对湿度条件下,不同粒径段(40、80、110、150、200 nm)弱吸湿组粒子数目占比(NFLH)随粒径的增大从40%降低至20%,而强吸湿组粒子数目占比(NFMH)却从60%增加到80%.弱吸湿组GF-PDF离散程度(σLH)在0.04~0.05之间,而强吸湿组GF-PDF离散程度(σMH)0.1,说明强吸湿组粒子化学成分较复杂,外混合程度较高.对比各粒径段气溶胶吸湿性日变化规律发现,平均吸湿增长因子(GFmean)和NFMH均呈双峰特征,峰值分别出现在7:00和17:00左右.受夜晚边界层降低、强吸湿性组分非均相转化生成等影响,GFmean和NFMH夜间数值整体大于白天;受降水等气象条件影响,污染时段所有粒径段气溶胶的GFmean和NFMH均高于清洁时段.  相似文献   

2.
The formation and aging mechanism of secondary organic aerosol (SOA) and its influencing factors have attracted increasing attention in recent years because of their effects on climate change, atmospheric quality and human health. However, there are still large errors between air quality model simulation results and field observations. The currently undetected components during the formation and aging of SOA due to the limitation of current monitoring techniques and the interactions among multiple SOA formation influencing factors might be the main reasons for the differences. In this paper, we present a detailed review of the complex dynamic physical and chemical processes and the corresponding influencing factors involved in SOA formation and aging. And all these results were mainly based the studies of photochemical smog chamber simulation. Although the properties of precursor volatile organic compounds (VOCs), oxidants (such as OH radicals), and atmospheric environmental factors (such as NOx, SO2, NH3, light intensity, temperature, humidity and seed aerosols) jointly influence the products and yield of SOA, the nucleation and vapor pressure of these products were found to be the most fundamental aspects when interpreting the dynamics of the SOA formation and aging process. The development of techniques for measuring intermediate species in SOA generation processes and the study of SOA generation and aging mechanism in complex systems should be important topics of future SOA research.  相似文献   

3.
气溶胶水相反应生成二次有机气溶胶研究进展   总被引:7,自引:3,他引:4  
液态水(云滴、雾滴和气溶胶水)在大气中无处不在,为大气水相化学反应提供了重要的场所.气态前体物(主要是VOCs)或它的气相初级氧化产物(包括中/半挥发性有机物,I/SVOCs)在大气凝聚相(水相)中发生反应,形成低挥发性高氧化性有机物(如有机硫和有机氮等),水分蒸发后留在颗粒相,即为水相二次有机气溶胶(aqueous-phase secondary organic aerosol,aq SOA).因其对OA具有重要的贡献和显著的环境、气候和人体健康影响,近年来成为大气化学研究的热点.尽管aq SOA的研究已取得了一些进展,但由于aq SOA形成机制复杂,对aq SOA的认知还比较匮乏.本文重点关注气溶胶水中反应生成的二次有机气溶胶(aqueous aerosol SOA,aa SOA)相关的研究进展,包括气态前体物、形成机制、实验室模拟、外场观测及有关aa SOA产率及贡献的相关研究成果.同时,对aa SOA的来源、生成机制等研究的发展方向进行了展望,包括:未知aa SOA前体物及示踪物鉴别、有机光敏剂诱发的自由基化学、有机硫和有机氮的形成机制、实际气溶胶水溶性组分和外场观测研究、模式模型研究等.  相似文献   

4.
The experimental study on ozonation of ethylenethiourea(ETU) is conducted.The reaction of gas-phase ETU with 0.63 × 10-6 mol/L ozone is carried out in a 200-L reaction chamber.The secondary organic aerosol(SOA) resulted from the ozonation of gas-phase ETU is observed with a scanning mobility particle size(SMPS).The rapid exponential growth of SOA reveals that the atmospheric lifetime of ETU vapor towards ozone reaction is less than four days.The ozonation of dry ETU particles,ETU-contained water droplets an...  相似文献   

5.
The reactions of gas-phase anthracene and suspended anthracene particles with O3 and O3-NO were conducted in a 200-L reaction chamber, respectively. The secondary organic aerosol (SOA) formations from gas-phase reactions of anthracene with O3 and O3-NO were observed. Meanwhile, the size distributions and mass concentrations of SOA were monitored with a scanning mobility particle sizer (SMPS) during the formation processes. The rapid exponential growths of SOA reveal that the atmospheric lifetimes of gas-phase anthracene towards O3 and O3-NO are less than 20.5 and 4.34 hr, respectively. The particulate oxidation products from homogeneous and heterogeneous reactions were analyzed with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). Gas chromatograph/mass spectrometer (GC/MS) analyses of oxidation products of anthracene were carried out for assigning the time-of-flight (TOF) mass spectra of products from homogeneous and heterogeneous reactions. Anthrone, anthraquinone, 9,10- dihydroxyanthracene, and 1,9,10-trihydroxyanthracene were the ozonation products of anthracene, while anthrone, anthraquinone, 9-nitroanthracene, and 1,8-dihydroxyanthraquinone were the main products of anthracene with O3-NO.  相似文献   

6.
Investigations of chemical properties of atmospheric aerosol particles were performed. Application of the spot techniques to individual ammonium containing particles in the urban site of Karlsruhe revealed the following results: (NH4)2SO4 particles dominate the sub-μm size range, only a few particles of (NH4)3H(SO4)2 or NH4HSO4 were detected. Mixed sulfates and nitrates of ammonium and some particles of calcium/ammonium salts were found in the μm-size range. Reaction spots containing particles in the characteristic form of alkali nitrate were found only during a smog day in January.  相似文献   

7.
The present article provides an overview of the chemical and physical features of haze in China, focusing on the relationship between haze and atmospheric fine particles, and the formation mechanism of haze. It also summarizes several of control technologies and strategies to mitigate the occurrence of haze. The development of instruments and the analysis of measurements of ambient particles and precursor concentrations have provided important information about haze formation. Indeed, the use of new instruments has greatly facilitated current haze research in China. Examples of insightful results include the relationship between fine particles and haze, the chemical compositions and sources of particles, the impacts of the aging process on haze formation, and the application of technologies that control the formation of haze. Based on these results, two relevant issues need to be addressed: understanding the relationship between haze and fine particles and understanding how to control PM2.5.  相似文献   

8.
碳质颗粒物是大气颗粒物的重要组成部分,对全球气候变化、环境质量、人类健康等有重要影响.本研究使用扫描质子微探针对上海两个典型环境监测点的大气颗粒物及7类污染排放源的单颗粒进行了分析.利用微束非卢瑟福弹性背散射谱micro-EBS(non-Rutherford elastic backscattering,EBS)分析了单颗粒中的C含量,发现燃煤烟尘、燃油烟尘、汽车尾气、柴油公交车尾气等污染源中碳质颗粒物占优,而水泥尘、钢铁工业尘、土壤尘中无机颗粒物占优;中心城区的碳质颗粒物占优,而工业区的无机颗粒物占优,单颗粒物的元素分布可以反映颗粒物发生大气化学反应的重要信息,利用微束质子激发X射线荧谱micro-PIXE(particle induced X-ray emission,PIXE)分析得到了大气颗粒物的S、Ca、Fe等元素分布,发现含Ca的碳质颗粒在大气中发生了硫化反应.  相似文献   

9.
A microphysical radiation fog model is coupled with a detailed chemistry module to simulate chemical reactions in the gas phase and in fog water during a radiation fog event. In the chemical part of the model the microphysical particle spectrum is subdivided into three size classes corresponding to non-activated aerosol particles, small and large fog droplets. Chemical reactions in the liquid phase are separately calculated in the small and in the large droplet size class. The impact of the chemical constitution of activated aerosols on fogwater chemistry is considered in the model simulations. The mass transfer of chemical species between the gas phase and the two liquid phases is treated in detail by solving the corresponding coupled differential equation system. The model also accounts for concentration changes of gas-phase and aqueous-phase chemical species which are induced by turbulence, gravitational settling and by evaporation/condensation processes.Numerical results demonstrate that fogwater chemistry is strongly controlled by dynamic processes, i.e. the vertical growth of the fog, turbulent mixing processes and the gravitational settling of the particles. The concentrations of aqueous-phase chemical species are different in the two droplet size classes. Reactands with lower water solubility are mainly found in the large droplet size class because the characteristic time for their mass transfer from the gas phase into the liquid phase is essentially longer than the characteristic time for the formation of large fog droplets. Species with high water solubility are rapidly transferred into the small fog droplets and are then washed out by wet deposition before these particles grow further to form large droplets. Thus, the concentrations of the major ions (NO3, NH4+) are much higher in small than in large droplets, yielding distinctly lower pH values of the small particles. In the present study the reaction of sulfur with H2O2 and the Fe(III)-catalysed autoxidation of S(IV) are the major S(VI) producing mechanisms in fog water. Most of the time the sulfur oxidation rates are higher in the large than in the small droplets. Fogwater deposition by gravitational settling occurs mainly in the large droplet size class. However, since in the small droplets the concentrations of chemical species with very good water solubility are relatively high, in both droplet size classes the total wet deposition of these reactands is of the same order of magnitude.  相似文献   

10.
采用特定的样品处理方式,利用静态飞行时间二次离子质谱(Static-TOF-SIMS)技术,对使用通用型大气污染物采样仪VAPS(URG-3000K)采集于非导电性的滤膜(聚碳酸酯滤膜)上的大气气溶胶细粒子(PM2.5)与粗粒子(PM2.5~10)的表面无机组分进行了探索性的比较分析.结果表明:大气气溶胶细粒子与粗粒子的表面无机组分组成特征具有明显的差异;气溶胶细粒子表面存在着大气中二次形成的亲水性化合物,会对其表面的疏水性/亲水性特征产生影响,从而影响其大气化学行为;气溶胶粗粒子表面存在氟化物,对生态环境和人体健康具有潜在的危害性,应该重视对气溶胶中氟污染的研究与控制;静态飞行时间二次离子质谱可以成为研究大气气溶胶表面化学组成特征的有利分析手段.   相似文献   

11.
南京北郊大气气溶胶的吸湿性观测研究   总被引:7,自引:0,他引:7  
大气气溶胶的吸湿性不仅影响气溶胶的光学特性进而影响大气能见度,并且影响气溶胶的直接和间接气候效应.本文利用加湿串联差分迁移分析仪H-TDMA,于2012年5~7月在南京地区,对40~200nm大气气溶胶粒子在不同相对湿度下的吸湿增长因子进行了观测研究.统计结果表明:在90%相对湿度下,颗粒物的吸湿增长因子GF多为双峰分布,分为GF1.15的强吸湿组分.弱吸湿组分的吸湿增长因子(GFLH)在1.10~1.14之间;对应的强吸湿组分增长因子(GFMH )范围在1.47~1.58之间变化.相同粒径下的离散程度(σ)强吸湿组大于弱吸湿组,说明强吸湿组的粒子化学成分更复杂,异质性更强.相对湿度的变化对粒子吸湿增长的影响与粒子大小及化学组分有关,爱根核模态和积聚模态粒子在相同的相对湿度下潮解点不同,硝酸铵和硫酸铵是颗粒物中的主要吸湿成分.对不同天气条件下的气溶胶吸湿性分析,发现污染期间的吸湿增长因子(GF)和强吸湿组的数目比例(NFMH)都高于清洁期间,这与当时的气象条件以及粒子的内外部混合状态相关.观测还发现气溶胶粒子的吸湿性有明显的日变化特征,白天光照所引发的光化学反应以及混合层演变而造成粒子的吸湿性较强.机动车尾气排放的黑碳等不吸湿或弱吸湿颗粒物也会因为影响颗粒物的化学成分并进而对气溶胶吸湿性产生影响.  相似文献   

12.
Emissions from mobile sources and stationary sources contribute to atmospheric pollution in China, and its components, which include ultrafine particles (UFPs), volatile organic compounds (VOCs), and other reactive gases, such as NH3 and NOx, are the most harmful to human health. China has released various regulations and standards to address pollution from mobile and stationary sources. Thus, it is urgent to develop online monitoring technology for atmospheric pollution source emissions. This study provides an overview of the main progress in mobile and stationary source monitoring technology in China and describes the comprehensive application of some typical instruments in vital areas in recent years. These instruments have been applied to monitor emissions from motor vehicles, ships, airports, the chemical industry, and electric power generation. Not only has the level of atmospheric environment monitoring technology and equipment been improving, but relevant regulations and standards have also been constantly updated. Meanwhile, the developed instruments can provide scientific assistance for the successful implementation of regulations. According to the potential problem areas in atmospheric pollution in China, some research hotspots and future trends of atmospheric online monitoring technology are summarized. Furthermore, more advanced atmospheric online monitoring technology will contribute to a comprehensive understanding of atmospheric pollution and improve environmental monitoring capacity.  相似文献   

13.
The present state of knowledge of organic, or carbon-based, peroxy radicals (RO2) is reviewed. Data on the chemical and physical properties of peroxy radicals in the gas-phase is considered, as well as the role of peroxy radicals in tropospheric chemistry and measurements of their concentrations in the atmosphere. Where appropriate, peroxy radicals are grouped together by type (alkyl, acyl, oxygen-substituted, halogen-substituted and aromatic radicals) to facilitate comparison. Data on the hydroperoxy radical (HO2) is included where it is directly relevant to measurements on organic peroxy radicals, eg. absorption cross-sections used in measurements of RO2 + HO2 rate constants. The literature data is critically reviewed and recommendations for absorption cross-sections, rate constants and branching ratios are made where considered appropriate.The laboratory experimental techniques which have been used for the generation and detection of peroxy radicals and the products of their reactions are discussed. The structure, spectroscopy and thermochemistry of the radicals are examined. Although the majority of spectroscopic data concerns the u.v. spectra much used for kinetic studies, near-infrared, infrared and electron spin resonance spectra are also considered. In many cases, peroxy radical u.v. spectra are well-fitted by a Gaussian distribution function, enabling the cross-sections to be easily calculated at any wavelength.For the purpose of this review, the chemical reactions of peroxy radicals are divided into reactions with organic peroxy radicals with HO2, with NO and NO2, and finally with other species. Peroxy radical abstraction and addition reactions with closed-shell species are sufficiently slow to be of negligible importance at temperatures pertinent to the atmosphere and are consequently not covered. Data on both the kinetics and mechanisms of peroxy radical reactions are considered.The role of peroxy radicals as intermediates in the atmospheric degradation of volatile organic compounds and in the production of ozone in the troposphere under both low and high [NOx] conditions is discussed. The involvement of peroxy radicals in night-time oxidation chemistry and the oxidation of halocarbons is also indicated. The techniques used for the difficult measurement of peroxy radical concentrations in the atmosphere are described, together with the results to date.Finally, some tentative suggestions as to further avenues of research are made, based on the data reviewed here and with particular reference to the solution of outstanding problems in atmospheric chemistry. Although a great deal of progress has been made in recent years, it is clear that additional work is needed in most areas covered by this review. New, sensitive and selective laboratory techniques are required for studies of peroxy radical kinetics and high level ab initio calculations would help design laser-based detection techniques. Further product studies of photooxidation systems are needed, particularly as a function of temperature. Recent work has shown that the rate constants for RO2 + HO2 reactions used in modelling studies may be too low; if so, these reactions will be correspondingly more important than previously believed in tropospheric oxidation. Recent kinetic studies of the potentially important reactions of methylperoxy radicals with ClO and NO3 need to be confirmed and mechanistic work is necessary. Although substantial progress has been made towards the monitoring of peroxy radical concentrations in the atmosphere, more work is needed, both on measurements and the development of new techniques.  相似文献   

14.
大气棕碳(BrC)是对大气颗粒物中具有吸光能力的一类有机物的总称,其对空气能见度及气候系统均有重要影响.自2021年3月至2022年2月底于南京北郊利用黑碳仪测定了气溶胶中BrC的光吸收系数,利用最小相关性法分别定量一次(BrCpri)和二次棕碳(BrCsec)贡献,结合后向轨迹、潜在来源和日均变化,分析季节变化特征.结果表明,观测期间BrC的平均光吸收系数(370 nm)为(7.76±7.17)Mm-1,对于总气溶胶光吸收贡献率为(22.0±8.8)%.不同波长下棕碳吸光系数在四季呈现U字形变化,即春季和冬季高,夏季和秋季低.BrCpri和BrCsec(370 nm)全年光吸收贡献分别为(62.9±21.4)%和(37.1±21.4)%;前者在四季均占主导,但随着波长增加,BrCsec的贡献逐渐增加并最终占主导(如在660 nm时).除冬季以外,BrC在其他季节受到来自海上气团的显著影响,而冬季受当地及周边地区排放影响更为显著.交通排放在春、夏和秋季对一...  相似文献   

15.
This review surveys the present state of knowledge of the nitrate (NO3 radical. Laboratory data on the physics and chemistry of the radical and atmospheric determination of the concentrations of the radical are both considered. One aim of the review is to highlight the relationship between the laboratory and the atmospheric studies. Although the emphasis of the review is on gas-phase processes, relevant studies conducted in condensed phases are mentioned because of their potential importance in the interpretation of cloud and aerosol chemistry.The spectroscopy, structure, and photochemistry of the radical are examined. Here, the object is to establich the spectroscopic basis for detection of the radical and measurement of its concentration in the laboratory and in the atmosphere. Infrared, visible, and paramagnetic resonance spectra are considered. An important quantity discussed is the absorption cross section in the visible region, which is required for quantitative measurements. Interpretation of the spectroscopic features requires an understanding of the geometrical and electronic structure of the radical in its ground and excited states; there is still some controversy about the groundstate geometry, but the most recent experimental evidence 9eg from laser induced fluorescence) and theoretical calculations suggest that the radical has D3h symmetry. Photodissociation of the radical is important in the atmosphere, and the product channels, quantum yields, and dissociation dynamics are discussed. A short examination of the thermodynamics (heat and entropy of formation) of the radical is presented.The main exposition of laboratory studies of the chemistry of the nitrate radical is preceded by a consideration of the techniques used for kinetic and mechanistic studies. Methods for the generation and detection of the radical and the kinetic tools employed are all presented. The exact nature of the technique used in individual studies has some relevance to the way in which data must be analysed, and to the type of mechanistic information that can be extracted. Continuous and stopped flow, flash photolysis and pulse radiolysis, molecular modulation, and static reactor techniques can all provide absolute kinetic data, while relative rate measurements have been a further rich source of information.The treatment of the chemical reactions of the nitrate radical is formally divided into the interactions with non-radical inorganic (deemed to include NO and NO2) and organic species, and with atoms and free radicals. In general, the reactions with open-shell species are much more rapid than those with closed-shell reactants. With the closed-shell partners, addition reactions are faster than abstraction reactions. An attempt is made to consider critically the published data on most reactions of importance, and to tabulate rate constants and temperature dependences where possible. However, it is not the objective of this review to provide recommendations for rate parameters. Evidence for the products of the reactions is sought, and for the branching ratios into the various channels where more than one exists. One theme of this part of the review is the elucidation of correlations of reactivity with structure and with the reactions of other radical species such as OH.The review turns next to a consideration of the role of NO3 in the atmosphere, of its atmospheric sources and sinks, and of field measurements of concentrations of the radical. Long-path visible-absorption spectroscopy and matrix-isolation ESR have both been used successfully in field measurements in the troposphere as well as the stratosphere. Balloon-borne instruments and ground-based remote sensing have been used to obtain stratospheric concentrations. Two of the most important implications of the measurements are that the stratospheric profiles are consistent with accepted chemistry (and, in particular, do not require the postulation of an unidentified scavenging mechanism that had, at one stage, been proposed), and that the highly variable night-time tropospheric concentrations imply that NO3 is a reactive tropospheric constituent. The inter-relation between laboratory studies and atmospheric observations, and the problems in extrapolating laboratory data to atmospheric conditions, are both explored. Initiation of night-time chemical transformations by NO3 and the possible production of OH are considered. The available information is then brought together to see how far NO3 is a sensitive indicator of the state of the atmosphere, and some speculations are presented about the involvement of NO3 (or N2O5) in damage to trees and plants.The final section of the review suggests some issues that remain unresolved concerning the NO3 radical which is directly or indirectly relevant to a better knowledge of the part played by the radical in the atmosphere. Amongst the requirements noted are improved data for the heat of formation of the radical, its absorption cross section in the visible region (and, especially, the temperature dependence of the cross section), and the details of its photochemistry. There is also still a need for a definitive determination of the equilibrium constant and its temperature dependence for the association with NO2 and the reverse dissociation of N2O5. A series of chemical reactions deserves further investigation, especially with regard to elucidation of product channels, and overall oxidation mechanisms also need to be defined better. Future atmospheric studies that are desirable include study of basic NO3 chemistry in the field to understand the influence of humidity on the conversion (probably on surfaces) of N2O5 to HNO3, and thus on NO3 concentrations. In addition, a study of the chemistry of NO3 in the presence of volatile organic compounds and at elevated concentrations of the oxides of nitrogen should help in the understanding of, for example, polluted marine coasts, forests, and urban areas.  相似文献   

16.
The atmospheric chemistry in complex air pollution remains poorly understood. In order to probe how environmental conditions can impact the secondary organic aerosol (SOA) formation from biomass burning emissions, we investigated the photooxidation of 2,5-dimethylfuran (DMF) under different environmental conditions in a smog chamber. It was found that SO2 could promote the formation of SOA and increase the amounts of inorganic salts produced during the photooxidation. The formation rate of SOA and the corresponding SOA mass concentration increased gradually with the increasing DMF/OH ratio. The addition of (NH4)2SO4 seed aerosol accelerated the SOA formation rate and significantly shortened the time for the reaction to reach equilibrium. Additionally, a relatively high illumination intensity promoted the formation of OH radicals and, correspondingly, enhanced the photooxidation of DMF. However, the enhancement of light intensity accelerated the aging of SOA, which led to a gradual decrease of the SOA mass concentration. This work shows that by having varying influence on atmospheric chemical reactions, the same environmental factor can affect SOA formation in different ways. The present study is helpful for us to better understand atmospheric complex pollution.  相似文献   

17.
大气颗粒物吸湿性研究   总被引:6,自引:2,他引:4  
大气颗粒物吸湿性是反映颗粒物理化性质的重要指标,吸湿性研究对深入了解颗粒物的环境和健康效应具有重要意义. 总结了国外近年来大气颗粒物吸湿性研究进展:①典型的大气颗粒物吸湿性分析方法为H-TDMA(吸湿性串联差分电迁移率粒径分析仪)系统及其优化方法. ②大气颗粒物吸湿性呈单峰、双峰甚至多峰分布;根据Gf(吸湿性生长因子)随粒径变化的模式,可将大气颗粒物分为强吸湿性和弱吸湿性2类,也可分为纯不溶性、混合不溶性、混合可溶性和纯可溶性4类. ③城市背景点颗粒物的Gf比城市观测点高;城市观测点的颗粒物Gf分布呈夏季高、冬季低,白天高、晚上低的特征. ④颗粒物吸湿性与其化学组成和形态密切相关,纯可溶性盐颗粒物的Gf通常较高. ⑤柴油燃烧源新排放的颗粒物属于弱吸湿性颗粒物,Gf非常小,但在其表面老化后或随燃料中硫含量的增加Gf会明显变大. ⑥生物质燃烧排放颗粒物的Gf相对较高,但存在区域差异性. 针对国内大气颗粒物吸湿性研究现状,提出了未来重点研究方向.   相似文献   

18.
New particle formation (NPF) is the primary source of nanoparticles and contributes a large number of concentrations of cloud condensation nuclei. In recent years, field campaigns and laboratory experiments have been conducted to promote cognition of the mechanism for NPF and its following growth processes. The chemical composition measurement of nanoparticles could help deepen understanding of the initial step of particulate matter formation. In this work, we developed a nanoparticle chemical ionization mass spectrometer to measure nanoparticles' chemical compositions during their initial growth stage. Meanwhile, a non-radioactive ion source was designed for aerosol charging and chemical ionization. Time of flight mass spectrometer coupled with integrated aerosol size selection and collection module would guarantee the picogram level detection limit and high-resolution ability to measure the matrix of ambient samples. The performance of this equipment was overall evaluated, including the transmission efficiency and collection efficiency of custom-built nano differential mobility analyzer, chemical ionization efficiency, and mass resolution of the mass spectrometer. The high sensitivity measurement of ammonium sulfate and methylammonium sulfate aerosols with diameters ranging from 10 to 25 nm could guarantee the application of this instrument in the ambient measurement.  相似文献   

19.
The atmosphere interacts both with incoming as well as outgoing light. Two main processes take place: light scattering and light absorption. Whereas light scattering redistributes any ligh energy in the atmosphere, light absorption converts the light energy to internal energy of the absorbing molecules and eventually transfers it to the surrounding gas as heat.Atmospheric gases absorb light in distinct spectral regions usually at more or less broad bands. Best known is the broad absorption of ozone in the far u.v., being essential for the existence of the biological macromolecules on Earth. Gases known as greenhouse gases, e.g. CO2, CH4, N2O and water vapor absorb a wide range of infrared radiation, and thus are responsible for the greenhouse effects. Since the lifetime of these gases (except water vapor) is considerable, their distribution around the globe is fairly homogeneous.The atmospheric aerosol gives the major contribution to the atmospheric light absorption in the visible and near u.v. and near i.r. Graphitic (black) carbon, the main constituent of soot, is almost exclusively responsible for the light absorption of the particles. The light absorption by aerosols is continuous and covers the whole visible spectral range. It only depends slightly on wavelength.The optical properties of elemental carbon are determined by the size of the particles and their complex refractive index. A variety of refractive indices can be found in the literature for elemental carbon, most likely caused by different production and thus composition of the particles. Soot particles are very efficient in attenuating light; for the average size the particles have more than twice the mass extinction coefficient compared to transparent particles such as ammonium sulfate. The light absorption coefficient of a mixture of elemental carbon and transparent materials is higher for internal than for external mixtures. When incorporated into transparent particles, the absorption properties of elemental carbon can be multiplied and the single scattering albedo will decrease in comparison to an external mixture of the same materials.There are different methods to measure the light absorption coefficient of suspended particles. They can be separated in three groups, depending on the effect or methodology they use, but no standard procedure has been adopted so far.Soot is produced by all combusttion processes. Since most fires on Earth are due to humans, then indirectly humans are the major source of light-absorbing aerosol particles. On a global scale black carbon amounts to 1.1–2.5% of the anthropogenic particles and to 0.2–1% of the total emitted particles. The emission factors for elemental carbon are highest for small sources such as diesel motors or fireplaces.The light-absorbing aerosol consists of fine particles, with most particles having diameters less than a few tenths of a micrometer. Particles in the size range of soot particles have an average lifetime of 7 days in the atmosphere, therefore they can be transported over large distances and are also found in remote regions. Since light-absorbing particles have a variety of sources and sinks and they are involved in precipitation cycles, their distribution on the globe is inhomogeneous. Light-absorption coefficients of the atmospheric aerosol reported in the literature differ by more than four orders of magnitudes at different locations, but nevertheless black carbon particles have been found even at very remote areas, such as the South Pole.Although light-absorbing particles are a minority component in the atmospheric aerosol, their effects cannot be neglected: since the mass extinction coefficient of soot is higher by a factor of two to three compared to transparent particles, light-absorbing substances in the atmosphere can cause at some locations up to half of the visibility reduction; light-absorbing substances in the atmosphere can be responsible for the brown appearance of urban hazes and the discoloration of the sky.The light absorption of the atmosphere in the visible (which mainly is due to particulate matter) has to be taken into account when considering radiative properties and climatic consequences. A small temperature increase due to absorption in the visible is to be expected. The value is around a few tenths of a Kelvin, but no general statement on its magnitude is possible, since a large spatial and temporal variation exists and other factors like surface albedo, the optical depth of the aerosol, its incorporation in clouds and humidity growth of the aerosol have to be considered.  相似文献   

20.
含聚合物污水回注时污染地层的主要物质分析   总被引:5,自引:0,他引:5  
笔者系统分析了大庆油田南三区东部聚合物驱产出水处理前后原油、聚合物、固体悬浮物、无机离子和细菌等成分的含量及其固体悬浮物颗粒直径大小与分布,并且对该区聚合物驱产出水主要特征进行了总结,在此基础上,根据油层损害机理并且结合该区油层的孔渗特征,研究和确定了污染物质。得出结论:聚合物驱产出水中硫酸盐还原菌是主要污染物质,此外,向萨葡油层的低、中渗层及高台子油层回注时,固体悬浮物和原油也是主要污染物质,而聚合物仅对低渗层造成损害;常规处理方法对污水中原油处理效果最好,而对PAM和固体悬浮物处理不太理想。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号